HAOI2010软件安装(树形背包)
HAOI2010软件安装(树形背包)
题意
有n个物品,每个物品最多会依赖一个物品,但一个物品可以依赖于一个不独立(依赖于其它物品)的物品,且可能有多个物品依赖一个物品,并且依赖关系可能形成一个环。现给你V的资金,问如何分配资金,可以使你的得到的总价值最大,请求出这个总价值。
解法
我以前写过对于普通依赖性背包的博客:noip2006金明的预算方案如果对依赖性背包不是很熟悉的同学可以先看一下这道题。
由于这道题的依赖关系可能形成环,所以我们先用tarjan缩一下点,然后依赖关系图就变成了一个森林,这时候我们再将每一棵树的根节点向0号结点连一条边,表示他们依赖0号结点。这时候我们就得到了一颗依赖关系树。
那么现在的重点就在如何处理这颗依赖关系树。因为树上每一个节点的决策数都太大了,所以同样的我们考虑求出每一个以i节点为根的子树在任意权值下的最大价值,然后再在i节点利用01背包来合并,一直递归往上。最后的答案就是0号结点所有方案中最优的那一个。
ps:如果还是看不懂的话,可以参观这里和这里我也是在那儿学的。
代码
以下的代码是 \(O(nv^2)\) 的:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cctype>
#include <vector>
#define INF 2139062143
#define MAX 0x7ffffffffffffff
#define del(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
template<typename T>
inline void read(T&x)
{
x=0;T k=1;char c=getchar();
while(!isdigit(c)){if(c=='-')k=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}x*=k;
}
const int maxn=2500+15;
int w[maxn],cost[maxn];
int n,m,ecnt;
struct Edge{
int u,v;
Edge(int u,int v):u(u),v(v){}
};
vector<Edge> edge;
vector<int> G[maxn];
void add_edge(int u,int v) {
edge.push_back(Edge(u,v));
ecnt=edge.size();
G[u].push_back(ecnt-1);
}
int dfn[maxn],low[maxn],sta[maxn],top,bl[maxn],cnt;
bool ins[maxn];
void tarjian(int u) {
ins[u]=1;sta[++top]=u;
dfn[u]=low[u]=++cnt;
for(int i=0;i<G[u].size();i++) {
Edge e=edge[G[u][i]];
int v=e.v;
if(!dfn[v]) {
tarjian(v);
low[u]=min(low[u],low[v]);
}
else if(ins[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]) {
int y;
while((y=sta[top--])&&y) {
bl[y]=u;
ins[y]=0;
if(u==y) break;
w[u]+=w[y],cost[u]+=cost[y];
}
}
}
int dp[maxn][maxn];
void dfs(int u) {
dp[u][cost[u]]=w[u];
for(int i=0;i<G[u].size();i++) {
Edge e=edge[G[u][i]];
int v=e.v;
dfs(v);
for(int i=m;i>=cost[u];i--)
for(int j=0;j<=i-cost[u];j++)
dp[u][i]=max(dp[u][i],dp[u][i-j]+dp[v][j]);
}
}
bool noroot[maxn];
int main()
{
read(n),read(m);
for(int i=1;i<=n;i++) read(cost[i]);
for(int i=1;i<=n;i++) read(w[i]);
for(int i=1;i<=n;i++) {
int d;read(d);
if(!d) continue;
add_edge(d,i);
}
for(int i=1;i<=n;i++) if(!dfn[i]) tarjian(i);
int k=edge.size();
for(int i=0;i<=n;i++) G[i].clear();
for(int i=0;i<k;i++) {
Edge e=edge[i];
int f1=bl[e.u],f2=bl[e.v];
if(f1==f2) continue;// 新的两个点可能在同一个强连通分量中!!
add_edge(f1,f2);noroot[f2]=1;
}
for(int i=1;i<=n;i++) if((bl[i]==i)&&(!noroot[i])) add_edge(0,i);
dfs(0);
int ans=0;
for(int i=0;i<=m;i++)
ans=max(ans,dp[0][i]);
printf("%d\n",ans);
return 0;
}
这下面的是参照徐持横的算法做到的 \(O(nv)\) 的算法:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <cctype>
#include <vector>
#define INF 2139062143
#define MAX 0x7ffffffffffffff
#define del(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
template<typename T>
inline void read(T&x)
{
x=0;T k=1;char c=getchar();
while(!isdigit(c)){if(c=='-')k=-1;c=getchar();}
while(isdigit(c)){x=x*10+c-'0';c=getchar();}x*=k;
}
const int maxn=500+15;
int w[maxn],cost[maxn];
int n,m,ecnt;
struct Edge{
int u,v;
Edge(int u,int v):u(u),v(v){}
};
vector<Edge> edge;
vector<int> G[maxn];
void add_edge(int u,int v) {
edge.push_back(Edge(u,v));
ecnt=edge.size();
G[u].push_back(ecnt-1);
}
int dfn[maxn],low[maxn],sta[maxn],top,bl[maxn],cnt;
bool ins[maxn];
void tarjian(int u) {
ins[u]=1;sta[++top]=u;
dfn[u]=low[u]=++cnt;
for(int i=0;i<G[u].size();i++) {
Edge e=edge[G[u][i]];
int v=e.v;
if(!dfn[v]) {
tarjian(v);
low[u]=min(low[u],low[v]);
}
else if(ins[v]) low[u]=min(low[u],dfn[v]);
}
if(low[u]==dfn[u]) {
int y;
while((y=sta[top--])&&y) {
bl[y]=u;
ins[y]=0;
if(u==y) break;
w[u]+=w[y],cost[u]+=cost[y];
}
}
}
int dp[maxn][maxn];
void dfs(int u,int M) {
if(M<=0) return;
for(int i=0;i<G[u].size();i++) {
Edge e=edge[G[u][i]];
int v=e.v;
for(int j=1;j<=M;j++) dp[v][j]=dp[u][j];
dfs(v,M-cost[v]);
for(int j=cost[v];j<=M;j++) dp[u][j]=max(dp[u][j],dp[v][j-cost[v]]+w[v]);
}
}
bool noroot[maxn];
int main()
{
read(n),read(m);
for(int i=1;i<=n;i++) read(cost[i]);
for(int i=1;i<=n;i++) read(w[i]);
for(int i=1;i<=n;i++) {
int d;read(d);
if(!d) continue;
add_edge(d,i);
}
for(int i=1;i<=n;i++) if(!dfn[i]) tarjian(i);
int k=edge.size();
for(int i=0;i<=n;i++) G[i].clear();
for(int i=0;i<k;i++) {
Edge e=edge[i];
int f1=bl[e.u],f2=bl[e.v];
if(f1==f2) continue;// 新的两个点可能在同一个强连通分量中!!
add_edge(f1,f2);noroot[f2]=1;
}
for(int i=1;i<=n;i++) if((bl[i]==i)&&(!noroot[i])) add_edge(0,i);
dfs(0,m);
int ans=0;
for(int i=0;i<=m;i++) ans=max(ans,dp[0][i]);
printf("%d",ans);
return 0;
}
HAOI2010软件安装(树形背包)的更多相关文章
- BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)
Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...
- 【BZOJ2427】[HAOI2010]软件安装 Tarjan+树形背包
[BZOJ2427][HAOI2010]软件安装 Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为 ...
- BZOJ_2427_[HAOI2010]软件安装_tarjan+树形DP
BZOJ_2427_[HAOI2010]软件安装_tarjan+树形DP 题意: 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁 ...
- Tarjan+树形DP【洛谷P2515】[HAOI2010]软件安装
[洛谷P2515][HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得 ...
- [HAOI2010]软件安装(Tarjan,树形dp)
[HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可 ...
- bzoj 2427 [HAOI2010]软件安装 Tarjan缩点+树形dp
[HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2029 Solved: 811[Submit][Status][Dis ...
- 洛谷 P2515 [HAOI2010]软件安装 解题报告
P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...
- [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1987 Solved: 791[Submit][Statu ...
- bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)
2427: [HAOI2010]软件安装 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1053 Solved: 424[Submit][Statu ...
随机推荐
- ubuntu 关于sublime text3的一些应用
安装 如今能够通过ppa的方法来安装sublime text3 了,个人感觉就是有有点儿慢,毕竟要update一下. sudo add-apt-repository ppa:webupd8team/s ...
- ORACLE错误1033出现和ORA-00600错误解决的方法
非法关机以后.Oracle数据常常出现这个错误: EXP-00056:ORACLE错误1033出现 ORA-01033:ORACLE initialization or shutdown in pro ...
- php循环,die/exit脚本执行控制,文件载入及错误控制
循环控制 大部分和c/java同样 for循环 while循环 do while循环 foreach循环(特有) 循环中断 : 1.break: 用于全然停止某个循环,让运行流程进入到循环语句后面的语 ...
- linux下查看监听port相应的进程
使用netstat查看进程PID [root@test ~]# netstat -anp|grep 5001 tcp 0 0 :::5001 :::* LISTEN 12886/java 之后各位看官 ...
- Extjs4,form提交时emptyText传值问题
在Extjs4中,form提交时,文本框的emptyText会传到后台,比如 上图中的“请选择”这样的文本会作为值传到后台. 解决方法: form提交时配置 submitEmptyText: fal ...
- BNU 13259.Story of Tomisu Ghost 分解质因子
Story of Tomisu Ghost It is now 2150 AD and problem-setters are having a horrified time as the ghost ...
- Rockchip平台TP驱动详解【转】
本文转载自:http://blog.csdn.net/encourage2011/article/details/51679332 本文描述在RK3126平台上添加一个新的TP驱动(gslx680驱动 ...
- poj--1753--Flip Game(dfs好题)
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37201 Accepted: 16201 Descr ...
- mtools 是由MongoDB 官方工程师实现的一套工具集,可以很快速的日志查询分析、统计功能,此外还支持本地集群部署管理.
mtools 是由MongoDB 官方工程师实现的一套工具集,可以很快速的日志查询分析.统计功能,此外还支持本地集群部署管理 https://www.cnblogs.com/littleatp/p/9 ...
- ACM_Exponentiation
Exponentiation Time Limit: 2000/1000ms (Java/Others) Problem Description: Problems involving the com ...