Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special Judge


The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.

The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.

Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:

fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i

Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.

Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.

Input

The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.

Output

On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.

Sample Input

2

4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2

4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3

Sample Input

NO

YES
1
2
3
2
1
1

大意:

一个没有源点汇点的图,每条边有最小和最大流量,流在图中循环。求是否存在符合要求(每条边的流量在最小和最大限制之间)的流,输出方案,spj。

题解:

将问题转化为有源点汇点的图

设超级源点S,超级汇点T

将一条流量边  a->b   [max ,  min]  (a到b,最大流量max,最小流量min)拆为三条边:

S->b  min

a->T  min

a->b max-min

个人理解,对于这一条边,跑最大流的时候需要满足从b流出的流量为min,到a的流量为min。

如果跑完最大流后满流,则存在方案,因为从S的出边流量和到T的流量相等,都等于sigma(min)

如果满流,则最小流量条件能够满足。

/*
Welcome Hacking
Wish You High Rating
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
using namespace std;
int read(){
int xx=,ff=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){xx=(xx<<)+(xx<<)+ch-'';ch=getchar();}
return xx*ff;
}
inline int mymin(int xx,int yy)
{if(xx<yy)return xx;return yy;}
const int maxn=;
int N,M,T,t1,t2,t3,t4,sum,ans;
int ss,tt,mp[][];
int lin[maxn],len;
struct edge{
int y,next,flow;
}e[];
inline void insert(int xx,int yy,int ff){
e[++len].next=lin[xx];
lin[xx]=len;
e[len].y=yy;
e[len].flow=ff;
}
inline void ins(int xx,int yy,int ff)
{insert(xx,yy,ff),insert(yy,xx,);}
int q[maxn],head,tail,level[maxn];
bool makelevel(){
memset(level,-,sizeof(level));
head=tail=;
q[head]=ss;
level[ss]=;
for(;head<=tail;head++){
for(int i=lin[q[head]];i;i=e[i].next)
if(level[e[i].y]==-&&e[i].flow){
level[e[i].y]=level[q[head]]+;
q[++tail]=e[i].y;
}
}
return level[tt]!=-;
}
int max_flow(int x,int flow){
if(x==tt)
return flow;
int d,maxflow=;
for(int i=lin[x];i&&maxflow<flow;i=e[i].next)
if(level[e[i].y]==level[x]+&&e[i].flow){
d=max_flow(e[i].y,mymin(e[i].flow,flow-maxflow));
if(d){
maxflow+=d;
e[i].flow-=d;
if(i&)
e[i+].flow+=d;
else
e[i-].flow+=d;
}
}
if(!maxflow)
level[x]=-;
return maxflow;
}
void dinic(){
ans=;
while(makelevel()){
int d=;
while(d){
d=max_flow(ss,<<);
ans+=d;
}
}
if(ans==sum){
printf("YES\n");
for(int i=;i<=M;i++)
printf("%d\n",e[mp[i][]].flow+mp[i][]);
}
else
printf("NO\n\n");
}
int main(){
//freopen("in","r",stdin);
//freopen("out","w",stdout);
T=read();
while(T--){
N=read(),M=read();
ss=N+,tt=ss+;
memset(lin,,sizeof(lin));len=;sum=;
for(int i=;i<=M;i++){
t1=read(),t2=read(),t3=read(),t4=read();
ins(t1,t2,t4-t3);
mp[i][]=len;mp[i][]=t3;
ins(ss,t2,t3);
ins(t1,tt,t3);
sum+=t3;
}
dinic();
}
return ;
}

ZOJ 2314 无源汇可行流(输出方案)的更多相关文章

  1. ZOJ 2314 Reactor Cooling | 无源汇可行流

    题目: 无源汇可行流例题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题解: 证明什么的就算了,下面给出一种建图方式 ...

  2. ZOJ 1314 Reactor Cooling | 上下界无源汇可行流

    ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...

  3. 算法复习——无源汇可行流(zoj2314)

    题目: The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nucl ...

  4. sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)

    [题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...

  5. SGU 194 无源无汇可行流求解

    题意:n个点,m条边,每条边有容量限制 l--c,每个点满足容量平衡(流入等于流出),求可行解 无源无汇可行流问题,建立以一个超级源点和超级汇点,由于原来最大流问题时候,流量下界其实为0, 所以要转化 ...

  6. ZOJ 3229 Shoot the Bullet | 有源汇可行流

    题目: 射命丸文要给幻想乡的居民照相,共照n天m个人,每天射命丸文照相数不多于d个,且一个人n天一共被拍的照片不能少于g个,且每天可照的人有限制,且这些人今天照的相片必须在[l,r]以内,求是否有可行 ...

  7. BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)

    题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...

  8. 【zoj2314】Reactor Cooling 有上下界可行流

    题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...

  9. [BZOJ3698]XWW的难题解题报告|上下界网络流|有源汇最大流

    XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XW ...

随机推荐

  1. ionic2 打包时报错 file-opener2

    在app自动更新过程中,有用到ionic-native插件:cordova-plugin-file-openner2    添加插件后,打包时有错: FAILURE: Build failed wit ...

  2. 【PL/SQL】九九乘法口诀表

    --输出屏幕信息 SET serveroutput ON; --打印口诀表 DECLARE V_NUMBER1 ); --外层循环变量 V_NUMBER2 ); --内层循环变量 BEGIN .. - ...

  3. JS——this与new

    this: 1.this只出现在函数中 2.谁调用函数,this就指的是谁 3.new People的this指的就是被创建的对象实例 new: 1.开辟内存空间,存储新创建的对象 2.把this设置 ...

  4. String数据类型转换

    String是final类,提供字符串不可修改.强制类型转换,String类型无处不在.下面介绍一些常见的String数据类型转换. String数据类型转换成long.int.double.floa ...

  5. codeforces_738C_二分

    C. Road to Cinema time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  6. Discuz! X3.1云平台QQ互联的Unknown column 'conuintoken' in 'field list' 解决办法

    http://www.discuz.net/thread-3482497-1-1.html 由于程序安装默认数据表的结构和QQ互联数据表结构不同,安装Discuz! X3.1和升级Discuz! X3 ...

  7. jquery from使用

    jquery form是一个基于jquery的表单异步提交的插件,通过它能快速简便的提交表单. html <div> <form id="ajaxForm" me ...

  8. java静态变量、实例变量和局部变

    实例变量又称成员变量: 1⃣️成员变量定义在类中,在整个类中都可以被访问 2⃣️成员变量随着对象的建立而建立,随对象的消失而消失,存在于对象所在的对内存中 3⃣️成员变量有默认初始值 局部变量: 1⃣ ...

  9. leetcode刷题记录--js

    leetcode刷题记录 两数之和 给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标. 你可以假设每种输入只会对应一个答案.但 ...

  10. (蓝桥杯)第八届A组C/C++跳蚱蜢

    #include<iostream> #include<memory.h> #include<stack> #include<string> #incl ...