ZOJ 2314 无源汇可行流(输出方案)
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij = 0 if there is no pipe from node i to node j), for each i the following condition must hold:
fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i
Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
Sample Input
2
4 6
1 2 1 2
2 3 1 2
3 4 1 2
4 1 1 2
1 3 1 2
4 2 1 2
4 6
1 2 1 3
2 3 1 3
3 4 1 3
4 1 1 3
1 3 1 3
4 2 1 3
Sample Input
NO
YES
1
2
3
2
1
1
大意:
一个没有源点汇点的图,每条边有最小和最大流量,流在图中循环。求是否存在符合要求(每条边的流量在最小和最大限制之间)的流,输出方案,spj。
题解:
将问题转化为有源点汇点的图
设超级源点S,超级汇点T
将一条流量边 a->b [max , min] (a到b,最大流量max,最小流量min)拆为三条边:
S->b min
a->T min
a->b max-min
个人理解,对于这一条边,跑最大流的时候需要满足从b流出的流量为min,到a的流量为min。
如果跑完最大流后满流,则存在方案,因为从S的出边流量和到T的流量相等,都等于sigma(min)
如果满流,则最小流量条件能够满足。
/*
Welcome Hacking
Wish You High Rating
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<string>
using namespace std;
int read(){
int xx=,ff=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){xx=(xx<<)+(xx<<)+ch-'';ch=getchar();}
return xx*ff;
}
inline int mymin(int xx,int yy)
{if(xx<yy)return xx;return yy;}
const int maxn=;
int N,M,T,t1,t2,t3,t4,sum,ans;
int ss,tt,mp[][];
int lin[maxn],len;
struct edge{
int y,next,flow;
}e[];
inline void insert(int xx,int yy,int ff){
e[++len].next=lin[xx];
lin[xx]=len;
e[len].y=yy;
e[len].flow=ff;
}
inline void ins(int xx,int yy,int ff)
{insert(xx,yy,ff),insert(yy,xx,);}
int q[maxn],head,tail,level[maxn];
bool makelevel(){
memset(level,-,sizeof(level));
head=tail=;
q[head]=ss;
level[ss]=;
for(;head<=tail;head++){
for(int i=lin[q[head]];i;i=e[i].next)
if(level[e[i].y]==-&&e[i].flow){
level[e[i].y]=level[q[head]]+;
q[++tail]=e[i].y;
}
}
return level[tt]!=-;
}
int max_flow(int x,int flow){
if(x==tt)
return flow;
int d,maxflow=;
for(int i=lin[x];i&&maxflow<flow;i=e[i].next)
if(level[e[i].y]==level[x]+&&e[i].flow){
d=max_flow(e[i].y,mymin(e[i].flow,flow-maxflow));
if(d){
maxflow+=d;
e[i].flow-=d;
if(i&)
e[i+].flow+=d;
else
e[i-].flow+=d;
}
}
if(!maxflow)
level[x]=-;
return maxflow;
}
void dinic(){
ans=;
while(makelevel()){
int d=;
while(d){
d=max_flow(ss,<<);
ans+=d;
}
}
if(ans==sum){
printf("YES\n");
for(int i=;i<=M;i++)
printf("%d\n",e[mp[i][]].flow+mp[i][]);
}
else
printf("NO\n\n");
}
int main(){
//freopen("in","r",stdin);
//freopen("out","w",stdout);
T=read();
while(T--){
N=read(),M=read();
ss=N+,tt=ss+;
memset(lin,,sizeof(lin));len=;sum=;
for(int i=;i<=M;i++){
t1=read(),t2=read(),t3=read(),t4=read();
ins(t1,t2,t4-t3);
mp[i][]=len;mp[i][]=t3;
ins(ss,t2,t3);
ins(t1,tt,t3);
sum+=t3;
}
dinic();
}
return ;
}
ZOJ 2314 无源汇可行流(输出方案)的更多相关文章
- ZOJ 2314 Reactor Cooling | 无源汇可行流
题目: 无源汇可行流例题 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题解: 证明什么的就算了,下面给出一种建图方式 ...
- ZOJ 1314 Reactor Cooling | 上下界无源汇可行流
ZOJ 1314 Reactor Cooling | 上下界无源汇可行流 题意 有一个网络,每条边有流量的上界和下界,求一种方案,让里面的流可以循环往复地流动起来. 题解 上下界无源汇可行流的模型: ...
- 算法复习——无源汇可行流(zoj2314)
题目: The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nucl ...
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
- SGU 194 无源无汇可行流求解
题意:n个点,m条边,每条边有容量限制 l--c,每个点满足容量平衡(流入等于流出),求可行解 无源无汇可行流问题,建立以一个超级源点和超级汇点,由于原来最大流问题时候,流量下界其实为0, 所以要转化 ...
- ZOJ 3229 Shoot the Bullet | 有源汇可行流
题目: 射命丸文要给幻想乡的居民照相,共照n天m个人,每天射命丸文照相数不多于d个,且一个人n天一共被拍的照片不能少于g个,且每天可照的人有限制,且这些人今天照的相片必须在[l,r]以内,求是否有可行 ...
- BZOJ.1927.[SDOI2010]星际竞速(无源汇上下界费用流SPFA /最小路径覆盖)
题目链接 上下界费用流: /* 每个点i恰好(最少+最多)经过一次->拆点(最多)+限制流量下界(i,i',[1,1],0)(最少) 然后无源汇可行流 不需要源汇. 注: SS只会连i',求SS ...
- 【zoj2314】Reactor Cooling 有上下界可行流
题目描述 The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuc ...
- [BZOJ3698]XWW的难题解题报告|上下界网络流|有源汇最大流
XWW是个影响力很大的人,他有很多的追随者.这些追随者都想要加入XWW教成为XWW的教徒.但是这并不容易,需要通过XWW的考核.XWW给你出了这么一个难题:XWW给你一个N*N的正实数矩阵A,满足XW ...
随机推荐
- python_文件io
# -*- coding:UTF-8 -*-#从键盘读入raw_input([prompt]) #函数从标准输入读取一个行,并返回一个字符串(去掉结尾的换行符)#input([prompt]) 函数和 ...
- Ubuntu 18.04 如何固定图标到任务栏
参考 https://blog.csdn.net/u014160286/article/details/81631863
- Nginx +tomcat 实现负载均衡集群
一. 工具 nginx-1.8.0 apache-tomcat-6.0.33 二. 目标 实现高性能负载均衡的Tomcat集群: 三. 步骤 1.首先下载Nginx ...
- uvalive 3231
3231 - Fair ShareAsia - Seoul - 2004/2005You are given N processors and M jobs to be processed. Two ...
- 使用Python的Flask框架,结合Highchart,动态渲染图表(Ajax 请求数据接口)
参考链接:https://www.highcharts.com.cn/docs/ajax 参考链接中的示例代码是使用php写的,这里改用python写. 需要注意的地方: 1.接口返回的数据格式,这个 ...
- 基于vue的nuxt框架cnode社区服务端渲染
nuxt-cnode 基于vue的nuxt框架仿的cnode社区服务端渲染,主要是为了seo优化以及首屏加载速度 线上地址 http://nuxt-cnode.foreversnsd.cngithub ...
- BZOJ 1602 USACO 2008 Oct. 牧场行走
[题解] 要求出树上两点间的距离,树上的边有边权,本来应该是个LCA. 看他数据小,Xjb水过去了...其实也算是LCA吧,一个O(n)的LCA... #include<cstdio> # ...
- 一个电商项目的Web服务化改造6:单元测试4步走,构造数据、执行操作、断言、回滚
最近一直在做一个电商项目,需要把原有单系统架构的项目,改造成基于服务的架构,SOA. 有点挑战,做完了,会有很大进步. 单元测试,在很早之前的文章已经介绍过. 可以在这里看到相关的 ...
- js 保留几位小数位数
定义和用法 toFixed() 方法可把 Number 四舍五入为指定小数位数的数字.
- vue 瀑布流实现
<div class="myWrite" v-if="list.length==0"> - 这个福宝有点懒哦 - </div> < ...