题目大意

  给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排序分为两种:(0,l,r)表示将区间[l,r]的数字升序排序;(1,l,r)表示将区间[l,r]的数字降序排序。最后询问第q位置上的数字。n<=30000。

题解

  关键词:反演。

  我们假设最后q位置上的值为val。此时我们对整个序列进行排序...我们发现除了val外,其它点之间的顺序并不重要,只有其他点与val的相对大小才有意义。所以我们将原序列中位置上的值小于val的的值设为0,大于等于的设为1,整个序列上每个点的值表示的就是序列上的原值与val的大小关系。这样对01值排序用覆盖式的线段树来进行排序过程最方便了(具体看代码中的Sort)。

  此时q位置上的值如果是0,则说明当前的val比答案大;若此时q位置上的值是1,则说明当前的val小于或等于答案。也就是说,val越大,最后q位上的值越有可能是0,val越小,q位上的值越有可能是1。因此我们可以用UpperBound二分得出答案。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cassert>
using namespace std; const int MAX_N = 30010, MAX_NODE = MAX_N * 4, MAX_OP = 30010;
int OrgData[MAX_N];
int N, TotOp, P; struct RangeTree
{
private: struct Node
{
int Sum, Cover;
}_nodes[MAX_NODE];
int N; void PushDown(int cur, int l, int r)
{
if (_nodes[cur].Cover >= 0)
{
_nodes[cur * 2].Cover = _nodes[cur].Cover;
_nodes[cur * 2 + 1].Cover = _nodes[cur].Cover; int mid = (l + r) / 2;
_nodes[cur * 2].Sum = _nodes[cur].Cover * (mid - l + 1);
_nodes[cur * 2 + 1].Sum = _nodes[cur].Cover * (r - mid); _nodes[cur].Cover = -1;
}
} void PullUp(int cur)
{
_nodes[cur].Sum = _nodes[cur * 2].Sum + _nodes[cur * 2 + 1].Sum;
} void Update(int cur, int al, int ar, int sl, int sr, int cover)
{
assert(al <= sr && ar >= sl && sl <= sr);
if (al <= sl && sr <= ar)
{
_nodes[cur].Cover = cover;
_nodes[cur].Sum = cover * (sr - sl + 1);
return;
}
PushDown(cur, sl, sr);
int mid = (sl + sr) / 2;
if (al <= mid)
Update(cur * 2, al, ar, sl, mid, cover);
if (ar > mid)
Update(cur * 2 + 1, al, ar, mid + 1, sr, cover);
PullUp(cur);
} int Query(int cur, int al, int ar, int sl, int sr)
{
assert(al <= sr && ar >= sl && sl <= sr);
if (al <= sl && sr <= ar)
return _nodes[cur].Sum;
PushDown(cur, sl, sr);
int mid = (sl + sr) / 2, ans = 0;
if (al <= mid)
ans += Query(cur * 2, al, ar, sl, mid);
if (ar > mid)
ans += Query(cur * 2 + 1, al, ar, mid + 1, sr);
PullUp(cur);
return ans;
} void InitBuild(int cur, int sl, int sr, int *a)
{
if (sl == sr)
{
_nodes[cur].Sum = a[sl];
_nodes[cur].Cover = -1;
return;
}
int mid = (sl + sr) / 2;
InitBuild(cur * 2, sl, mid, a);
InitBuild(cur * 2 + 1, mid + 1, sr, a);
_nodes[cur].Cover = -1;
PullUp(cur);
} public: void Init(int n, int *a)
{
N = n;
InitBuild(1, 1, N, a);
} void Update(int l, int r, int cover)
{
if (l > r)
return;
Update(1, l, r, 1, N, cover);
} int Query(int l, int r)
{
return Query(1, l, r, 1, N);
}
}g; struct Oper//operation
{
int L, R;
bool IsUp; Oper(){}
Oper(int l, int r, int isUp):L(l),R(r),IsUp(isUp){}
}_ops[MAX_OP]; void Sort(Oper op)
{
int sum1 = g.Query(op.L, op.R);
if (op.IsUp)
{
g.Update(op.R - sum1 + 1, op.R, 1);
g.Update(op.L, op.R - sum1, 0);
}
else
{
g.Update(op.L, op.L + sum1 - 1, 1);
g.Update(op.L + sum1, op.R, 0);
}
} bool AnsNotLesser(int val)
{
static int a[MAX_N];
for (int i = 1; i <= N; i++)
a[i] = (OrgData[i] >= val);
g.Init(N, a); for (int i = 1; i <= TotOp; i++)
Sort(_ops[i]);
return g.Query(P, P) == 1;
} int UpperBound(int l, int r, bool(*InRange)(int))
{
while (l < r)
{
int mid = (l + r + 1) / 2;
if (InRange(mid))
l = mid;
else
r = mid - 1;
}
return l;
} int main()
{
scanf("%d%d", &N, &TotOp);
for (int i = 1; i <= N; i++)
scanf("%d", OrgData + i);
for (int i = 1; i <= TotOp; i++)
{
int l, r, isDown;
scanf("%d%d%d", &isDown, &l, &r);
_ops[i] = Oper(l, r, !isDown);
}
scanf("%d", &P);
printf("%d\n", UpperBound(1, N, AnsNotLesser));
return 0;
}

  

luogu2828 [HEOI2016/TJOI2016]排序的更多相关文章

  1. 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告

    P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...

  2. [HEOI2016/TJOI2016]排序 线段树+二分

    [HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...

  3. [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)

    题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...

  4. 2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)

    2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串) https://www.luogu.com.cn/problem/P2824 题意: 在 20 ...

  5. [HEOI2016&TJOI2016] 排序(线段树)

    4552: [Tjoi2016&Heoi2016]排序 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2703  Solved: 1386[S ...

  6. [HEOI2016/TJOI2016]排序

    嘟嘟嘟 首先这题的暴力是十分好写的,而且据说能得不少分. 正解写起来不难,就是不太好想. 根据做题经验,我想到了给这个序列转化成01序列,但是接下来我就不会了.还是看了题解. 因为查询只有一个数,所以 ...

  7. 【线段树合并】【P2824】 [HEOI2016/TJOI2016]排序

    Description 给定一个长度为 \(n\) 的排列,有 \(m\) 次操作,每次选取一段局部进行升序或降序排序,问你一波操作后某个位置上的数字是几 Hint \(1~\leq~n,~m~\le ...

  8. 【[HEOI2016/TJOI2016]排序】

    巧妙思路题 有一个重要的思想就是把大于某一个数的数都变成\(1\),小于这个数的都变成\(0\),这个只有\(0\)和\(1\)的序列就很好处理了 由于我们只需要在最后求出一个位置上是什么数就可以了, ...

  9. BZOJ4552:[HEOI2016/TJOI2016]排序——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4552 https://www.luogu.org/problemnew/show/P2824 在2 ...

随机推荐

  1. java heap 异常

    近期,项目每运行一周之后就会堆异常, java.lang.OutOfMemoryError: Java heap space,导致应用中断. 解决办法:将堆内存修改大一点. 从性能优化工具中可以看到修 ...

  2. HTML和CSS网页开发基础

    一 HTML文档结构 HTML文档结构:<html>.<head>.<title>.<body>构成HTML页面中最基本的元素. HTML常用标记:1. ...

  3. 移动web——bootstrap响应式工具

    基本介绍 1.利用媒体查询功能并使用这些工具类可以方便的针对不同设备展示或隐藏页面内容. 基本使用 <!DOCTYPE html> <html lang="zh-CN&qu ...

  4. Google开源技术protobuf

    1.protobuf简介 protobuf是google提供的一个开源序列化框架,类似于XML,JSON这样的数据表示语言,其最大的特点是基于二进制,因此比传统的XML表示高效短小得多.虽然是二进制数 ...

  5. 【译】x86程序员手册06 - 2.4指令格式

    2.4 Instruction Format 指令格式 The information encoded in an 80386 instruction includes a specification ...

  6. Learning opencv续不足(七)线图像的设计D

    因为线图像startline有了起点和终点,我们就可以用DDA法求出线上所有点,任意斜率直线通过四象限八区域查表法界定.我们只示范一个区域:函数为: public PointF DdaFindPtIm ...

  7. awk 新手入门笔记

    转自:http://www.habadog.com/2011/05/22/awk-freshman-handbook/ awk新手入门笔记 @作者 : habadog@邮箱 : habadog1203 ...

  8. 【数据结构】C语言栈的基本操作

    #include<stdio.h> #include<stdlib.h> #include<malloc.h> //定义节点 struct Node { int d ...

  9. 远程连接Ubuntu的桌面

    参考:http://www.linuxidc.com/Linux/2016-06/132442.htm http://teliute.org/linux/TeUbt/lesson52/lesson52 ...

  10. bupt summer training for 16 #8 ——字符串处理

    https://vjudge.net/contest/175596#overview A.设第i次出现的位置左右端点分别为Li,Ri 初始化L0 = 0,则有ans = sum{ (L[i] - L[ ...