思路:

经典题 不解释

找到最小的数mn

所有都是在mod mn的意义下 搞得

i->(i+a[i])%mn  边权为a[i]

//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=*,inf=0x3f3f3f3f;
int n,first[N],next[N],v[N],tot,minn=inf,a[],vis[N];
ll BMin,BMax,w[N],dis[N],ans;
void add(int x,int y,int z){w[tot]=z,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
struct Node{int now,dis;}st,jy;
bool operator<(Node a,Node b){return a.dis>b.dis;}
priority_queue<Node>pq;
int main(){
memset(first,-,sizeof(first));
memset(dis,0x3f,sizeof(dis));
scanf("%d%lld%lld",&n,&BMin,&BMax);
for(int i=;i<=n;i++)scanf("%d",&a[i]),minn=min(minn,a[i]);
dis[]=;
for(int i=;i<=n;i++)
for(int j=;j<minn;j++)
add(j,(j+a[i])%minn,a[i]);
pq.push(st);
while(!pq.empty()){
Node t=pq.top();pq.pop();
if(vis[t.now])continue;
vis[t.now]=;
for(int i=first[t.now];~i;i=next[i])
if(dis[v[i]]>dis[t.now]+w[i])
dis[v[i]]=dis[t.now]+w[i],
jy.now=v[i],jy.dis=dis[v[i]],pq.push(jy);
}BMin--;
for(int i=;i<minn;i++){
if(dis[i]<=BMin)ans-=(BMin-dis[i])/minn+;
if(dis[i]<=BMax)ans+=(BMax-dis[i])/minn+;
}printf("%lld\n",ans);
}

BZOJ 2118 Dijkstra的更多相关文章

  1. 【BZOJ 2118】 墨墨的等式(Dijkstra)

    BZOJ2118 墨墨的等式 题链:http://www.lydsy.com/JudgeOnline/problem.php?id=2118 Description 墨墨突然对等式很感兴趣,他正在研究 ...

  2. BZOJ.2118.墨墨的等式(思路 最短路Dijkstra 按余数分类)

    题目链接 题意可以看做,用\(a_1,a_2,...,a_n\),能组成多少个\([L,R]\)中的数. (40分就是个完全背包) 首先如果\(k*a_i+x\)可以组成,那么\((k+1)*a_i+ ...

  3. 【BZOJ 2118】墨墨的等式

    http://www.lydsy.com/JudgeOnline/problem.php?id=2118 最短路就是为了找到最小的$x$满足$x=k×a_{min}+d,0≤d<a_{min}$ ...

  4. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  5. BZOJ 2118 墨墨的等式(最短路)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2118 [题目大意] 求a1x1+a2y2+…+anxn=B在B的取值范围,有多少B可以 ...

  6. 数论+spfa算法 bzoj 2118 墨墨的等式

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1283  Solved: 496 Description 墨墨突然对等式很感兴 ...

  7. BZOJ 2118 墨墨的等式(最短路)

    很开拓眼界的题.. 题意:给出一个n元一次方程形如a1*x1+a2*x2...+an*xn=B,求满足解集为非负整数的B值在[L,R]范围内的种数.(n<=12,ai<=5e5,L< ...

  8. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

  9. [图论训练]BZOJ 2118: 墨墨的等式 【最短路】

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

随机推荐

  1. Android 动态设置 layout_centerInParent

    RelativeLayout.LayoutParams rp = new RelativeLayout.LayoutParams(LayoutParams.WRAP_CONTENT, LayoutPa ...

  2. CAD通过扩展记录实体向数据库读写用户自定义的全局数据(com接口VB语言)

    VB代码实现如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

  3. Sprinboot优雅配置监听,并记录所有启动事件

    在阅读Springboot启动源码的时候,发现Springboot自动启动listeners是通过uopeizhi文件配置的,本文就是采用Springboot方式自动装入listeners. 项目依赖 ...

  4. Chrome Headless模式

    在 Chrome 59 版本开始已经开始支持了 Headless 模式,也就是无界面模式,这样爬取的时候就不会弹出浏览器了,如果要使用此模式请把 Chrome 升级到 59 版本及以上,启用 Head ...

  5. Linux之ssh中XSHELL无法连接解决方案

    查漏补缺,理解概念,及时总结,互相交流,欢迎拍砖. 目前遇到的大致有以下几个问题分类: 网络是否连通.防火墙策略.DNS解析问题.端口是否开启.selinux是否开启-- 1.网络连通: 是否在同一网 ...

  6. 25.TF&IDF算法以及向量空间模型算法

    主要知识点: boolean model IF/IDF vector space model     一.boolean model     在es做各种搜索进行打分排序时,会先用boolean mo ...

  7. BZOJ1192 鬼谷子的钱袋

    没想到这是一道省选题... /* BZOJ1192 */ #include <cstdio> int main() { ; scanf("%d",&m); ;m ...

  8. [bzoj1103][POI2007]大都市meg_dfs序_树状数组

    大都市meg bzoj-1103 POI-2007 题目大意:给定一颗n个点的树,m次操作.将一条路的边权更改成0:查询一个点到根节点的点权和.开始的时候所有边的边权都是1. 注释:$1\le n,m ...

  9. MongoDB学习笔记一:MongoDB的下载和安装

    MongoDB学习笔记一:MongoDB的下载和安装 趁着这几天比較空暇,准备学习一下MongoDB数据库.今天就简单的学习了一些MongoDB的下载和安装.并创建了存储MongoDB的数据仓库. 将 ...

  10. POJ 3748:位操作

    位操作 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8964   Accepted: 3581 Description 如 ...