只知道算法描述和代码,而不知道原理是比较扯的事情,还是把原理转载一下。

原文链接: http://www.cnblogs.com/luyb/p/5447497.html

ORB-SLAM作为单目SLAM,其精度很大程度上决定于帧与帧之间的位姿优化的是否准确。因此优化(optimization)在ORB-SLAM里面扮演了很重要的角色。这一小节探讨一下ORB-SLAM里用到的优化。

ORB-SLAM选用g2o作为图优化的方法,关于g2o可以参考http://www.cnblogs.com/gaoxiang12/p/5304272.html

一、为什么要优化

因为摄像机标定(camera calibration)和追踪(tracking)的精度不够。摄像机标定的误差会体现在重建中(比如三角法重建时),而追踪的误差则会体现在不同关键帧之间的位姿中,和重建中(单目)。误差的不断累积会导致后面帧的位姿离实际位姿越来越远,最终会限制系统整体的精度。

1.1 摄像机标定

单目SLAM文献中一般假设摄像机标定的结果是准确的,并不考虑这个因素带来的误差(大概因为很多时候跑标准的数据集,认为摄像机标定的误差是相似的)。然而对于一个产品,不同类型的传感器对应的标定误差并不相同,甚至有可能差异很大。因此,如果要评估整个系统的精度,这方面的误差必须要考虑进去。

1.2 追踪

无论在单目、双目还是RGBD中,追踪得到的位姿都是有误差的。单目SLAM中,如果两帧之间有足够的对应点,那么既可以直接得到两帧之间的位姿(像初始化中那样),也可以通过求解一个优化问题得到(如solvePnP)。由于单目中尺度的不确定性,还会引入尺度的误差。由于tracking得到的总是相对位姿,前面某一帧的误差会一直传递到后面去,导致tracking到最后位姿误差有可能非常大。为了提高tracking的精度,可以1. 在局部和全局优化位姿;2. 利用闭环检测(loop closure)来优化位姿。

二、如何优化

2.1 优化的目标函数在SLAM问题中,常见的几种约束条件为:

1. 三维点到二维特征的映射关系(通过投影矩阵);

2. 位姿和位姿之间的变换关系(通过三维刚体变换);

3. 二维特征到二维特征的匹配关系(通过F矩阵);

4. 4呢?

5. 其它关系(比如单目中有相似变换关系)。如果我们能够知道其中的某些关系是准确的,那么可以在g2o中定义这样的关系及其对应的残差,通过不断迭代优化位姿来逐步减小残差和,从而达到优化位姿的目标。

2.2 局部优化

当新的关键帧加入到convisibility graph时,作者在关键帧附近进行一次局部优化,如下图所示。Pos3是新加入的关键帧,其初始估计位姿已经得到。此时,Pos2是和Pos3相连的关键帧,X2是Pos3看到的三维点,X1是Pos2看到的三维点,这些都属于局部信息,共同参与Bundle Adjustment。同时,Pos1也可以看到X1,但它和Pos3没有直接的联系,属于Pos3关联的局部信息,参与Bundle Adjustment,但取值保持不变。Pos0和X0不参与Bundle
Adjustment。

因此,参与优化的是下图中红色椭圆圈出的部分,其中红色代表取值会被优化,灰色代表取值保持不变。(u,v)是X在Pos下的二维投影点,即X在Pos下的测量(measurement)。优化的目标是让投影误差最小。

2.3 全局优化

在全局优化中,所有的关键帧(除了第一帧)和三维点都参与优化。

2.4  闭环处的Sim3位姿优化

当检测到闭环时,闭环连接的两个关键帧的位姿需要通过Sim3优化(以使得其尺度一致)。优化求解两帧之间的相似变换矩阵,使得二维对应点(feature)的投影误差最小。

如下图所示,Pos6和Pos2为一个可能的闭环。通过(u 4,2 ,v 4,2 ) (u4,2,v4,2)和(u 4,6 ,v 4,6 ) (u4,6,v4,6)之间的投影误差来优化S 6,2  S6,2。

2.5 Sim3上的位姿优化

单目SLAM一般都会发生尺度(scale)漂移,因此Sim3上的优化是必要的。相对于SE3,Sim3的自由度要多一个,而且优化的目标是矫正尺度因子,因此优化并没有加入更多的变量(如三维点)。

作者在检测到闭环时在Sim3上对所有的位姿进行一次优化。定义Sim3上的残差如下:

e i,j =log Sim3 (S ij S jw S −1 iw ) ei,j=logSim3(SijSjwSiw−1)

其中S iw  Siw的初值是尺度为1的Pos
i相对于世界坐标系的变换矩阵。S i,j  Si,j为Pos
i和Pos j之间的(Sim3优化之前的)相对位姿矩阵,表示S iw  Siw和S jw  Sjw之间的测量(measurement)。此处相当于认为局部的相对位姿是准确的,而全局位姿有累计误差,是不准确的。

三、小结

个人理解,单目SLAM中的优化需要更多技巧,要有明确的优化目标,要仔细权衡其中的参数选择、自由度、速度和稳定性。

该系列的其它文章:

ORB-SLAM(一)简介

ORB-SLAM(二)性能

ORB-SLAM(三)初始化

ORB-SLAM(四)追踪

ORB-SLAM(六)回环检测



SLAM:ORB-SLAM 位姿优化描述的更多相关文章

  1. 从零开始一起学习SLAM | 学习SLAM到底需要学什么?

    SLAM涉及的知识面很广,我简单总结了 “SLAM知识树” 如下所示: (公众号菜单栏回复 “树” 可获得清晰版) 可以看到涉及的知识面还是比较广的.这里放出一张SLAM圈子里喜闻乐见的表达悲喜交加心 ...

  2. [SLAM]Karto SLAM算法学习(草稿)

    Karto_slam算法是一个Graph based SLAM算法.包括前端和后端.关于代码要分成两块内容来看. 一类是OpenKarto项目,是最初的开源代码,包括算法的核心内容: https:// ...

  3. SLAM: 单目视觉SLAM的方案分类《机器人手册》

    摘抄知乎上一段有趣的话:     如果你出门问别人『学习SLAM需要哪些基础?』之类的问题,一定会有很热心的大哥大姐过来摸摸你的头,肩或者腰(不重要),一脸神秘地从怀里拿出一本比馒头还厚的<Mu ...

  4. SLAM初探-SLAM for Dummies

    SLAM综述性特别是原理讲述比较浅显易懂的的资料比较少,相对比较知名的是<SLAM for Dummies>,但中文资料相对较少,这里就简单概述一下<SLAM for Dummies ...

  5. [SLAM] GMapping SLAM源码阅读(草稿)

    目前可以从很多地方得到RBPF的代码,主要看的是Cyrill Stachniss的代码,据此进行理解. Author:Giorgio Grisetti; Cyrill Stachniss  http: ...

  6. PL-SVO公式推导及代码解析:位姿优化

    通过跳过极线约束单独优化图像中每个特征的位置后,必须通过最小化3D特征与图像中相应的2D特征位置之间的重投影误差来进一步细化(3)中获得的相机姿态( 见图5).为此,我们考虑在世界坐标系中3D特征和相 ...

  7. 从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码

    首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种 ...

  8. 第六篇 视觉slam中的优化问题梳理及雅克比推导

    优化问题定义以及求解 通用定义 解决问题的开始一定是定义清楚问题.这里引用g2o的定义. \[ \begin{aligned} \mathbf{F}(\mathbf{x})&=\sum_{k\ ...

  9. SLAM图优化g2o

    SLAM图优化g2o 图优化g2o框架 图优化的英文是 graph optimization 或者 graph-based optimization, "图"其实是数据结构中的gr ...

随机推荐

  1. 腾讯云,搭建python开发环境

    准备工作 任务时间:5min ~ 10min Python是一种解释型.面向对象.动态数据类型的高级程序设计语言.首先我们来看看系统中是否已经存在 Python ,并安装一些开发工具包: 安装前准备 ...

  2. PAT 1105 Spiral Matrix

    This time your job is to fill a sequence of N positive integers into a spiral matrix in non-increasi ...

  3. [luoguP2342] 叠积木(并查集)

    传送门 up[i] 表示一个木块上面有多少个 all[i] 表示整个连通块内有多少个 那么 一个木块下面的木块个数为 all[root[i]] - up[i] - 1 注意:up[i] 可以在 fin ...

  4. noip模拟赛 伪神

    题目背景 一切就绪 但愿,这样就好 自那之后的五年—— 作为封印持续增大的结果,在我体内积蓄了庞大的光精灵的力量 在幻灯结界里觉醒过来的我,和从封印解放出的德米奥格,就如同字面意思所述的,获得了等同于 ...

  5. 某种密码(password.*)

    关于某种密码有如下描述:某种密码的原文A是由N个数字组成,而密文B是一个长度为N的01数串,原文和密文的关联在于一个钥匙码KEY.若KEY=∑▒[Ai*Bi],则密文就是原文的一组合法密码.现在有原文 ...

  6. webservices系列(五)——javaweb整合Axis2及多service配置

    1.新建一个项目动态web项目webservice_test3. 2.打开<Tomcat安装目录>webapps/axis2/WEB-INF.将lib.conf.modules三个目录复制 ...

  7. Spring面试总结

    Spring面试总结 文件夹(?)[+] 1.什么是spring框架?Spring框架有哪些主要模块? Spring框架是一个为Java应用程序的开发提供了综合.广泛的基础性支持的Java平台.Spr ...

  8. springmvc 中开发Server Send Event

    springmvc 中开发Server Send Event 学习了:http://blog.csdn.net/leiliz/article/details/55195203 https://www. ...

  9. Erlang下与其他程序和语言的通信机制(1)

    在Erlang运行时中,提供了几种机制来实现与其它程序或者语言的通信.一种为分布式Erlang,一种为端口,其中端口分为普通端口和链入式驱动端口,还有后面引入的NIFs. 分布式Erlang:一个Er ...

  10. 好记性不如烂笔头——.NET运行原理

    WINDOWS中运行的代码,分为托管代码和非托管代码. .NET环境中运行的代码就是托管代码,.NET环境外运行的就是非托管代码. 我们开发的时候,会对源代码进行编译.但其实,对于托管代码,我们编译出 ...