Description

最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线。 新的电话线架设在已有的N(2 <= N <= 100,000)根电话线杆上, 第i根电话线杆的高度为height_i米(1 <= height_i <= 100)。 电话线总是从一根电话线杆的顶端被引到相邻的那根的顶端 如果这两根电话线杆的高度不同,那么FJ就必须为此支付 C*电话线杆高度差(1 <= C <= 100)的费用。当然,你不能移动电话线杆, 只能按原有的顺序在相邻杆间架设电话线。Farmer John认为 加高某些电话线杆能减少架设电话线的总花费,尽管这项工作也需要支出一定的费用。 更准确地,如果他把一根电话线杆加高X米的话,他得为此付出X^2的费用。 请你帮Farmer John计算一下,如果合理地进行这两种工作,他最少要在这个电话线改造工程上花多少钱。

Input

* 第1行: 2个用空格隔开的整数:N和C

* 第2..N+1行: 第i+1行仅有一个整数:height_i

Output

* 第1行: 输出Farmer John完成电话线改造工程所需要的最小花费

题解:

首先,加高后的最高高度一定不大于当前最高高度.

$f[i][j]$ 表示第 $i$ 个柱子高度为 $j$ 时的最小花费.
$f[i][j]=(j-h[i])^{2}+min(f[i-1][k]+c\times \left | k-j \right |)$
绝对值符号有些不好处理,再把转移方程拆一下:
$f[i][j]=(j-h[i])^{2}+min(f[i-1][k]-c\times k)$ ,$k<=j$
$f[i][j]=(j-h[i])^{2}+min(f[i-1][k]+c\times k)$, $k>=j$
不难看出,对于 $f[i][j]$ 来说, $(j-h[i])^{2}$ 是固定的,直接算即可.
我们设 $min1[i][j]$ 为 $k<=j$ 时 $f[i][k]-c\times k$ 的最小值.
不难得出 : $min1[i][j]=min(min1[i][j-1], f[i][j]-c\times j)$
而 $f[i][j]=(j-h[i])^{2}+min1[i-1][j]$.
于是,我们用下标为 $i-1$ 的答案来更新当前下标为 $i$ 的答案,再用当前的 $f[i][j]$ 来更新下标为 $i$ 的 $min1[i][j]$ 即可,每次转移时
$O(1)$ 的。
  
  1. #include<bits/stdc++.h>
  2. #define setIO(s) freopen(s".in","r",stdin)
  3. #define Max(a,b) (a=a>b?a:b)
  4. #define Min(a,b) (a=a<b?a:b)
  5. using namespace std;
  6. int f[103],h[100003],min1[103],min2[103];
  7. int main()
  8. {
  9. // setIO("input");
  10. int n,c,maxv=0;
  11. scanf("%d%d",&n,&c);
  12. for(int i=1;i<=n;++i)
  13. scanf("%d",&h[i]),Max(maxv,h[i]);
  14. memset(f,0x3f,sizeof(f));
  15. for(int i=h[1];i<=maxv;++i) f[i]=(i-h[1])*(i-h[1]);
  16. for(int i=2;i<=n;++i)
  17. {
  18. memset(min1,0x3f,sizeof(min1));
  19. memset(min2,0x3f,sizeof(min2));
  20. for(int j=h[i-1];j<=maxv;++j)
  21. min1[j]=min(min1[j-1],f[j]-c*j);
  22. for(int j=maxv;j>=1;--j)
  23. min2[j]=min(min2[j+1],j>=h[i-1]?f[j]+c*j:0x3f3f3f3f);
  24. for(int j=h[i];j<=maxv;++j)
  25. f[j]=(j-h[i])*(j-h[i])+min(min1[j]+c*j,min2[j]-c*j);
  26. }
  27. int ans=0x3f3f3f3f;
  28. for(int i=h[n];i<=maxv;++i) ans=min(ans,f[i]);
  29. printf("%d\n",ans);
  30. return 0;
  31. }

  

BZOJ 1705: [Usaco2007 Nov]Telephone Wire 架设电话线 DP + 优化 + 推导的更多相关文章

  1. bzoj 1705: [Usaco2007 Nov]Telephone Wire 架设电话线——dp

    Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...

  2. bzoj1705[Usaco2007 Nov]Telephone Wire 架设电话线(dp优化)

    1705: [Usaco2007 Nov]Telephone Wire 架设电话线 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 441  Solved: ...

  3. bzoj 1705: [Usaco2007 Nov]Telephone Wire 架设电话线【dp】

    i的初始化写成2了于是成功查错2h--怕不是个傻子 设f[i][j]为第i根高为j,转移是 \[ f[i][j]=min(f[i-1][k]+abs(k-j)*c+(j-h[i])^2)(j>= ...

  4. 【BZOJ】1705: [Usaco2007 Nov]Telephone Wire 架设电话线

    [题意]给定一排n根杆高度hi,一个常数C,杆升高x的代价为x^2,相邻两杆之间架设电话线代价为高度差*C,求总代价最小. [算法]DP+辅助数组优化 [题解]令f[i][j]表示第i根杆高度为j的最 ...

  5. 【bzoj1705】[Usaco2007 Nov]Telephone Wire 架设电话线 dp

    题目描述 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= N < ...

  6. 1705. [Usaco2007 Nov]Telephone Wire 架设电话线

    传送门 显然 $dp$,首先设 $f[i][j]$ 表示当前考虑到第 $i$ 个电线杆,高度为 $j$ 时的最小代价 那么有转移 $f[i][j]=f[i-1][k]+cost+C(j-k)$,其中 ...

  7. BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP

    BZOJ_1705_[Usaco2007 Nov]Telephone Wire 架设电话线_DP Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是 ...

  8. DP+滚动数组 || [Usaco2007 Nov]Telephone Wire 架设电话线 || BZOJ 1705 || Luogu P2885

    本来是懒得写题解的…想想还是要勤发题解和学习笔记…然后就滚过来写题解了. 题面:[USACO07NOV]电话线Telephone Wire 题解: F[ i ][ j ] 表示前 i 根电线杆,第 i ...

  9. bzoj 1705;poj 3612:[Usaco2007 Nov]Telephone Wire 架设电话线

    Description 最近,Farmer John的奶牛们越来越不满于牛棚里一塌糊涂的电话服务 于是,她们要求FJ把那些老旧的电话线换成性能更好的新电话线. 新的电话线架设在已有的N(2 <= ...

随机推荐

  1. VM 与主机不通的解决方法

    [root@localhost network-scripts]# ping 192.168.1.222 PING 192.168.1.222 (192.168.1.222) 56(84) bytes ...

  2. Surround the Trees HDU 1392 凸包

    Problem Description There are a lot of trees in an area. A peasant wants to buy a rope to surround a ...

  3. RDS MySQL 表上 Metadata lock 的产生和处理

    https://help.aliyun.com/knowledge_detail/41723.html?spm=5176.7841698.2.18.vNfPM3

  4. u-boot-2014.04移植FL2440(使用eclipse编辑uboot)

    1.首先安装eclipse 安装指令 : apt-get install eclipse 使用上面的命令会安装好jdk 和eclipse,eclipse必须在Java环境执行,所以须要安装jdk环境. ...

  5. HDU 4525

    也是水题了,不过注意负负也可以为正就好了. 今天看见bestcoder上的人那么厉害,唉,我什么时候才能赶上啊.. #include <iostream> #include <cst ...

  6. AVPlayer的使用,带缓冲

    #import "ViewController.h" #import <AVFoundation/AVFoundation.h> @interface ViewCont ...

  7. XMPP基本内容简单介绍

    即时通讯技术简单介绍 即时通讯技术(IM)支持用户在线实时交谈.假设要发送一条信息,用户须要打开一个小窗体,以便让用户及其朋友在当中输入信息并让交谈两方都看到交谈的内容.有很多的IM系统,如AOL I ...

  8. Android 下使用opencv

    两种方式: 1.java API 2.Native/C++ 方式,OpenCV.mk中默认使用动态库的方式链接opencv,设置OPENCV_LIB_TYPE:=STATIC 以静态库方式调用 htt ...

  9. 好记性不如烂笔头——WebService与Remoting

    一.WebService总体上分为5个层次: 1)HTTP传输信道 2)XML的数据格式 3)SOAP的封装协议,用于传输 4)WSDL的描述方式,用于引用 5)UDDI,通用描述.发现与集成服务,用 ...

  10. bzoj1116 [POI2008]CLO——并查集找环

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1116 分析性质,只要有环,那么给环定一下向就满足了条件: 环上点的其他边可以指向外面,所以两 ...