紫书 例题8-9 UVa 1451 (数形结合)
#include<cstdio>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 112345;
int sum[MAXN], p[MAXN], n, L;
char s[MAXN];
inline int compare_average(int x1, int x2, int x3, int x4) //比较斜率
{
return (sum[x2]-sum[x1-1]) * (x4-x3+1) - (sum[x4]-sum[x3-1]) * (x2-x1+1);
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%s", &n, &L, s+1); //s+1从位置一开始输入
sum[0] = 0;
REP(i, 1, n + 1) sum[i] = sum[i-1] + s[i] - '0';
int ansL = 1, ansR = L, i = 0, j = 0; //i到j这个区间代表去掉之后留下的有用的点
REP(t, L, n + 1)
{
while(j - i > 1 && compare_average(p[j-2], t-L, p[j-1], t-L) >= 0) j--; //去掉上凸点
p[j++] = t - L + 1;
while(j - i > 1 && compare_average(p[i], t, p[i+1], t) <= 0) i++; //去掉切点之前的点
int c = compare_average(p[i], t, ansL, ansR); //更新答案
if(c > 0 || c == 0 && t - p[i] < ansR - ansL)
{
ansL = p[i];
ansR = t;
}
}
printf("%d %d\n", ansL, ansR);
}
return 0;
}
紫书 例题8-9 UVa 1451 (数形结合)的更多相关文章
- UVa 1451 (数形结合 单调栈) Average
题意: 给出一个01串,选一个长度至少为L的连续子串,使得串中数字的平均值最大. 分析: 能把这道题想到用数形结合,用斜率表示平均值,我觉得这个想法太“天马行空”了 首先预处理子串的前缀和sum,如果 ...
- uva 1451 数形结合
思路:枚举点t,寻找满足条件的点t': 计sum[i]为前i项合,平均值即为sum[t]-sum[t'-1]/t-t'+1 设(Pi=(i,Si),表示点在s中的位置,那么就可以画出坐标图,问题就转化 ...
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
- 紫书 例题8-12 UVa 12627 (找规律 + 递归)
紫书上有很明显的笔误, 公式写错了.g(k, i)的那个公式应该加上c(k-1)而不是c(k).如果加上c(k-1)那就是这一次 所有的红气球的数目, 肯定大于最下面i行的红气球数 我用的是f的公式, ...
- 紫书 例题8-3 UVa 1152(中途相遇法)
这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...
- 紫书 例题8-4 UVa 11134(问题分解 + 贪心)
这道题目可以把问题分解, 因为x坐标和y坐标的答案之间没有联系, 所以可以单独求两个坐标的答案 我一开始想的是按照左区间从小到大, 相同的时候从右区间从小到大排序, 然后WA 去uDebug找了数据 ...
- 紫书 例题8-17 UVa 1609 (构造法)(详细注释)
这道题用构造法, 就是自己依据题目想出一种可以得到解的方法, 没有什么规律可言, 只能根据题目本身来思考. 这道题的构造法比较复杂, 不知道刘汝佳是怎么想出来的, 我想的话肯定想不到. 具体思路紫书上 ...
- 紫书 例题 9-5 UVa 12563 ( 01背包变形)
总的来说就是价值为1,时间因物品而变,同时注意要刚好取到的01背包 (1)时间方面.按照题意,每首歌的时间最多为t + w - 1,这里要注意. 同时记得最后要加入时间为678的一首歌曲 (2)这里因 ...
- 紫书 例题 10-26 UVa 11440(欧拉函数+数论)
这里用到了一些数论知识 首先素因子都大于M等价与M! 互质 然后又因为当k与M!互质且k>M!时当且仅当k mod M! 与M!互质(欧几里得算法的原理) 又因为N>=M, 所以N!为M! ...
随机推荐
- SQL日期数据格式的处理
sql server2000中使用convert来取得datetime数据类型样式(全) 日期数据格式的处理,两个示例: CONVERT(varchar(16), 时间一, 20) 结果:2007-0 ...
- pupload上传插件问题整理
前些日子公司网站需要开发一个类似与百度文库上传文档的功能,实现文档的批量上传.展示以及继续上传的功能.开发完成后,通过在多版浏览器下的使用,发现了一系列问题,特总结于下,以免来者在这些问题上耗费太多时 ...
- PHP中的 Iterator 与 Generator
在讲解生成器之前先介绍一下迭代器: 在 PHP 中,通常情况下遍历数组使用 foreach 来遍历. 如果我们要想让一个对象可以遍历呢? PHP 为我们提供了 Iterator 接口,只要实现了这个接 ...
- Vue系列(二):发送Ajax、JSONP请求、Vue生命周期及实例属性和方法、自定义指令与过渡
上一篇:Vue系列(一):简介.起步.常用指令.事件和属性.模板.过滤器 一. 发送AJAX请求 1. 简介 vue本身不支持发送AJAX请求,需要使用vue-resource.axios等插件实现 ...
- 【hdu 6321】Dynamic Graph Matching
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] DP 设f[i][j]表示前i个操作,已经匹配了的点的状态集合为j的方案数 对于+操作 有两种情况. 1.这条边作为匹配的边 2.这 ...
- Firefox OS简单介绍
Firefox OS系统架构框图 一些Firefox相关的术语简单介绍: B2G Boot to Gecko 的简称. Boot to Gecko Firefox OS 操作系统的project代号. ...
- android 读取xml
在有些应用中,有一点小数据.直接存储在XML就是.实现较为简单, 1.xml文件放入asset目录.结构如: <?xml version="1.0" encoding=&qu ...
- [ReactVR] Animate Text, Images, Views, and 3D Elements Using the Animated Library in React VR
Motion is an important aspect of a complete immersive experience, therefor we are going to look into ...
- weblogic部署struts2项目訪问action404错误
近期有个project部署到tomcat上是正常的,部署到weblogic上时訪问action报404错误.依据报错日志.在网上找到了原因例如以下: 部署到weblogic上.struts.xml配置 ...
- 2014年辛星解读css第三节
第二节我们讲述的差点儿全是CSS的选择器,那么以下这一节我们来讲一下CSS的颜色和文本的一些东西,尽管我对调色不大敏感.可是对于颜色还是比較感兴趣的. *********CSS中的颜色******** ...