[TJOI2011]树的序

题目描述

众所周知,二叉查找树的形态和键值的插入顺序密切相关。准确的讲:1、空树中加入一个键值k,则变为只有一个结点的二叉查找树,此结点的键值即为k;2、在非空树中插入一个键值k,若k小于其根的键值,则在其左子树中插入k,否则在其右子树中插入k。

我们将一棵二叉查找树的键值插入序列称为树的生成序列,现给出一个生成序列,求与其生成同样二叉查找树的所有生成序列中字典序最小的那个,其中,字典序关系是指对两个长度同为n的生成序列,先比较第一个插入键值,再比较第二个,依此类推。

输入输出格式

输入格式:

第一行,一个整数,n,表示二叉查找树的结点个数。第二行,有n个正整数,k1到kn,表示生成序列,简单起见,k1~kn为一个1到n的排列。

输出格式:

一行,n个正整数,为能够生成同样二叉查找数的所有生成序列中最小的。

输入输出样例

输入样例#1: 复制

4

1 3 4 2

输出样例#1: 复制

1 3 2 4

说明

对于20%的数据,n ≤ 10。

对于50%的数据,n ≤ 100。

对于100%的数据,n ≤ 100,000。

题解

先看出题目是直接建树然后贪心输出中序遍历。

然后交上去。发现如果树是链的话就被卡成\(O(n^2)\)。

怎么办呢?点开题解

发现题解多是笛卡尔树。

笛卡尔树是什么鬼东西(蒟蒻表示不会啊)

那就去学(抄题解)吧。

笛卡尔树类似于\(treap\)。

维护两个值,一个为\(key\)值即点权值,另一个在本题维护为\(id\),即出现顺序。

笛卡尔树是利用单调栈的特性建树的。

按样例的\(key\)值从小到大排序后。

\(id\)值为\(1,4,2,3.\)

我们先把\(1\)放进树。

然后让\(1\)点连右儿子\(key\)值为\(2\),\(id\)为\(4\)的点。

然后\(key\)值为\(3\)时,前面的\(2\)的\(id\)比3的\(id\)大。

即按中序遍历,\(3\)的左儿子是\(2\)。

于是就断开\(1\)连向\(2\)的边,然后连向\(3\),并让\(3\)向\(2\)连一条边作为左儿子。

建树的性质就是这样的。

\(O(n)\)建树。

代码

先上\(O(n^2)\)写法

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
using namespace std;
const int N=1000001;
struct node{
int ch[2],vi;
}t[N<<1];
int ch[N],n,cnt=1,ans[N],tot;
int read(){
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} void build(int x){
int root=1;
while(t[root].ch[t[root].vi<ch[x]])root=t[root].ch[t[root].vi<ch[x]];
t[root].ch[t[root].vi<ch[x]]=++cnt;
t[cnt].vi=ch[x];
} void dfs(int x){
ans[++tot]=t[x].vi;
if(t[x].ch[0])dfs(t[x].ch[0]);
if(t[x].ch[1])dfs(t[x].ch[1]);
} int main(){
n=read();
for(int i=1;i<=n;i++)ch[i]=read();
t[1].vi=ch[1];
for(int i=2;i<=n;i++)build(i);
dfs(1);
for(int i=1;i<=n;i++)printf("%d ",ans[i]);
return 0;
}

AC代码

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1000010;
struct node{
int vi,ch[2],fa,id;
}ch[N],t[N];
int n,tot,line[N];
int read(){
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=x*10+ch-'0',ch=getchar();
return x*w;
} bool cmp(node a,node b){
return a.vi<b.vi;
} void add(int fa,int now,int f){
t[fa].ch[f]=now;
} void dfs(int x){
if(!x)return;
printf("%d ",t[x].vi);
dfs(t[x].ch[0]);dfs(t[x].ch[1]);
} int main(){
n=read();
for(int i=1;i<=n;i++){
ch[i].vi=read();ch[i].id=i;
}
sort(ch+1,ch+n+1,cmp);
for(int i=1;i<=n;i++){
int last=0;
while(tot&&t[line[tot]].id>ch[i].id)
last=tot--;
t[i].id=ch[i].id;t[i].vi=ch[i].vi;
add(line[tot],i,1);add(i,line[last],0);
line[++tot]=i;
}
dfs(t[0].ch[1]);
return 0;
}

[TJOI2011]树的序(贪心,笛卡尔树)的更多相关文章

  1. 7.28 NOI模拟赛 H2O 笛卡尔树 并查集 贪心 长链剖分

    LINK:H2O 这场比赛打的稀烂 爆蛋. 只会暴力.感觉暴力细节比较多不想写. 其实这道题的难点就在于 采取什么样的策略放海绵猫. 知道了这一点才能确定每次放完海绵猫后的答案. 暴力枚举是不行的.而 ...

  2. POJ 1785 Binary Search Heap Construction(裸笛卡尔树的构造)

    笛卡尔树: 每个节点有2个关键字key.value.从key的角度看,这是一颗二叉搜索树,每个节点的左子树的key都比它小,右子树都比它大:从value的角度看,这是一个堆. 题意:以字符串为关键字k ...

  3. PTA 笛卡尔树

    笛卡尔树 (25 分) 笛卡尔树是一种特殊的二叉树,其结点包含两个关键字K1和K2.首先笛卡尔树是关于K1的二叉搜索树,即结点左子树的所有K1值都比该结点的K1值小,右子树则大.其次所有结点的K2关键 ...

  4. Codeforces Round #114 (Div. 1) D. Wizards and Roads 笛卡尔树+树贪心+阅读题

    D. Wizards and Roads 题目连接: http://www.codeforces.com/contest/167/problem/D Description In some count ...

  5. [模板] 笛卡尔树 && RMQ

    话说我noip之前为什么要学这种东西... 简介 笛卡尔树(Cartesian Tree) 是一种二叉树, 且同时具有以下两种性质: 父亲节点的值大于/小于子节点的值; 中序遍历的结果为原序列. 笛卡 ...

  6. 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)

    在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...

  7. 笛卡尔树Cartesian Tree

    前言 最近做题目,已经不止一次用到笛卡尔树了.这种数据结构极为优秀,但是构造的细节很容易出错.因此写一篇文章做一个总结. 笛卡尔树 Cartesian Tree 引入问题 有N条的长条状的矩形,宽度都 ...

  8. XJOI 3606 最大子矩形面积/LightOJ 1083 Histogram(单调栈/笛卡尔树)

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rec ...

  9. 笛卡尔树 POJ ——1785 Binary Search Heap Construction

    相应POJ 题目:点击打开链接 Binary Search Heap Construction Time Limit: 2000MS   Memory Limit: 30000K Total Subm ...

随机推荐

  1. 如何使用图形界面Webmin管理linux服务器

    出处:http://linux.cn/thread/11992/1/1/ 如何使用图形界面Webmin管理linux服务器 一台典型的linux服务器运行命令行环境中,并已经包括了一些用于安装和配置各 ...

  2. [HDU1052]Tian Ji -- The Horse Racing(田忌赛马)

    题目大意:田忌赛马问题,给出田忌和齐威王的马的数量$n$和每匹马的速度$v$,求田忌最多赢齐威王多少钱(赢一局得200,输一局扣200,平局不得不扣). 思路:贪心. 1.若田忌最慢的马可以战胜齐王最 ...

  3. MySQL 面试题(一)

    原文地址:http://www.2cto.com/database/201311/254385.html 作者:黄杉(红黑联盟) 公司招聘MySQL DBA面试心得 1    2年MySQL DBA经 ...

  4. Maven系列--web.xml 配置详解

    一 .web.xml介绍 启动一个WEB项目的时候,WEB容器会去读取它的配置文件web.xml,读取<listener>和<context-param>两个结点. 紧接着,容 ...

  5. 数据结构实现(四)二叉查找树java实现

    转载 http://www.cnblogs.com/CherishFX/p/4625382.html 二叉查找树的定义: 二叉查找树或者是一颗空树,或者是一颗具有以下特性的非空二叉树: 1. 若左子树 ...

  6. java深克隆与浅克隆

    2015.9.19 6:45   星期五    1

  7. Maven导入ojdbc14.jar和ojdbc6.jar

    Maven导入ojdbc14.jar和ojdbc6.jar 学习了:http://blog.csdn.net/johon_medison/article/details/51689690 在 ‘运行’ ...

  8. OSGI项目中获取文件路径

    假设想依据给定的文件名创建一个File实例,你可能会这么写: File file = new File(当前类.class.getResource("config").toURI( ...

  9. PHP中用下标符号[]去读取字符串的逻辑

    PHP中 [(下标)] 符号不仅能够应用于数组和对象,还能够应用于字符串,假设不注意非常easy出错. 比方获取一个网络接口,正常情况下会返回一个数组结构的json,经过解析之后结果为: array( ...

  10. 关于markdown的使用

    首先: https://www.cnblogs.com/jordangong/p/9804777.html 注意:提交博客时需将 Markdown 源码粘贴到编辑器中,且编辑器没有实时预览,可以上传后 ...