Additive equations--zoj
Additive equations
Time Limit: 10 Seconds Memory Limit: 32768 KB
We all understand that an integer set is a collection of distinct integers. Now the question is: given an integer set, can you find all its addtive equations? To explain what an additive equation is, let's look at the following examples:
1+2=3 is an additive equation of the set {1,2,3}, since all the numbers that are summed up in the left-hand-side of the equation, namely 1 and 2, belong to the same set as their sum 3 does. We consider 1+2=3 and 2+1=3 the same equation, and will always
output the numbers on the left-hand-side of the equation in ascending order. Therefore in this example, it is claimed that the set {1,2,3} has an unique additive equation 1+2=3.
It is not guaranteed that any integer set has its only additive equation. For example, the set {1,2,5} has no addtive equation and the set {1,2,3,5,6} has more than one additive equations such as 1+2=3, 1+2+3=6, etc. When the number of integers in a set
gets large, it will eventually become impossible to find all the additive equations from the top of our minds -- unless you are John von Neumann maybe. So we need you to program the computer to solve this problem.
Input
The input data consists of several test cases.
The first line of the input will contain an integer N, which is the number of test cases.
Each test case will first contain an integer M (1<=M<=30), which is the number of integers in the set, and then is followed by M distinct positive integers in the same line.
Output
For each test case, you are supposed to output all the additive equations of the set. These equations will be sorted according to their lengths first( i.e, the number of integer being summed), and then the equations with the same length will be sorted according
to the numbers from left to right, just like the sample output shows. When there is no such equation, simply output "Can't find any equations." in a line. Print a blank line after each test case.
Sample Input
3
3 1 2 3
3 1 2 5
6 1 2 3 5 4 6
Output for the Sample Input
1+2=3 Can't find any equations. 1+2=3
1+3=4
1+4=5
1+5=6
2+3=5
2+4=6
1+2+3=6
第一个数字表示输入数据的数量,之后每行第一个数表示有几个可供使用的数字,然后用这些数字组成加法等式,同一个数字不能重复使用,但是多次输入的数字可以重复使用。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[50],b[50],vis[1000010],flog,n;
void bfs(int pos,int num,int sum,int key)
{/*pos指向a数组,选择a中的数,num表示b数组中数字个数,sum表示当前和
key表示最多使用的数字个数*/
if(num>key)
return ;
if(sum>a[n-1])/*最大的和a数组的最后一个数*/
return ;
if(num==key&&vis[sum])
{
flog=0;/*当找到一种符合情况的时,flog赋值*/
int i;
for(i=0;i<key-1;i++)
printf("%d+",b[i]);
printf("%d=%d\n",b[key-1],sum);
return ;
}
if(pos>=n)
return ;
b[num]=a[pos];
bfs(pos+1,num+1,sum+a[pos],key);/*对于当前操作的数,有两种选择,
要或不要,要的话num+1,否则不加,之后这个数会被下一个数覆盖*/
bfs(pos+1,num,sum,key);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i;
scanf("%d",&n);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(vis,0,sizeof(vis));
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
vis[a[i]]=1;/*vis数组标记*/
}
flog=1;
sort(a,a+n);
for(i=2;i<n;i++)
bfs(0,0,0,i);
if(flog)
printf("Can't find any equations.\n");
printf("\n");
}
return 0;
}
Additive equations--zoj的更多相关文章
- ZOJ1204——Additive equations(DFS)
Additive equations Description We all understand that an integer set is a collection of distinct int ...
- zoj 1204 Additive equations
ACCEPT acm作业 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=204 因为老师是在集合那里要我们做这道题.所以我很是天 ...
- ZOJ 1204 一个集合能组成多少个等式
Additive equations Time Limit : 20000/10000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other ...
- POJ题目细究
acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP: 1011 NTA 简单题 1013 Great Equipment 简单题 102 ...
- 【转】POJ百道水题列表
以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...
- ZOJ ACM 1204 (JAVA)
毕业好几年了,对算法还是比較有兴趣,所以想又一次開始做ACM题.俺做题比較任意,一般先挑通过率高的题来做. 第1204题,详细描写叙述请參考,ZOJ ACM 1204 1)难度分析 这个题目,基本的难 ...
- ZOJ People Counting
第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ 3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...
- [LeetCode] Additive Number 加法数
Additive number is a positive integer whose digits can form additive sequence. A valid additive sequ ...
- HDU 4569 Special equations(取模)
Special equations Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- 关于17个Cr的430采购的注意事项 430F
430F不锈钢是在430钢上加上易切削性能的钢种.用于自动车床.螺栓和螺母等.430LX在430钢中添加Ti或Nb.降低C含量,改善了加工性能的和焊接性能.用于热水罐.供热水系统.卫生器具.家庭用耐用 ...
- Android @Field parameters can only be used with form encoding
今天在学习Retrofit的时候,当post请求时 public interface NewsDataService { @POST("news/list") Call<Ne ...
- 【Linux】Vi中的各种命令
Ctrl+u:向文件首翻半屏: Ctrl+d:向文件尾翻半屏: Ctrl+f:向文件尾翻一屏: Ctrl+b:向文件首翻一屏: Esc:从编辑模式切换到命令模式: ZZ:命令模式下保存当前文件所做的修 ...
- CentOS 7 中配置通过 daemon 模式启动的 Tomcat 8 服务
距离上次折腾已经有很长一段时间了... 不说这个,刚好有空闲,把这两天折腾的 Tomcat 8 的服务配置整理出来收录一下. 1.JDK安装 1)检查服务器是否预装了 openJdk,如果有就删除,在 ...
- php实现非对称加密
<?php /** * 使用openssl实现非对称加密 * * @since 2015-11-10 */ class Rsa { /** * 私钥 * */ private $_privKey ...
- c++ 枚举与字符串 比较
读取字符串,然后将这个字符转换为对应的枚举. 如:从屏幕上输入'a',则转换为set枚举中对应的a,源代码如下: //关键函数为char2enum(str,temp); #include using ...
- C# 遍历文本框
#region 文本框指定位置加入回车符 private void button1_Click(object sender, EventArgs e) { #region // 查询首字母位置 //s ...
- Robot Framework(六)变量
变量 2.5.1简介 变量是Robot Framework的一个不可或缺的特性,它们可以在测试数据的大多数地方使用.最常见的是,它们用于测试用例表和关键字表中关键字的参数,但所有设置都允许在其值中使用 ...
- transparent
transparent属性用来指定全透明色彩
- windows的时间同步工具:w32time
windows 客户端 官方文档自己排查可以看一下 如何在 Windows Server 中配置权威时间服务器 Windows Time Service Technical Reference Win ...