Additive equations


Time Limit: 10 Seconds      Memory Limit: 32768 KB


We all understand that an integer set is a collection of distinct integers. Now the question is: given an integer set, can you find all its addtive equations? To explain what an additive equation is, let's look at the following examples: 

    1+2=3 is an additive equation of the set {1,2,3}, since all the numbers that are summed up in the left-hand-side of the equation, namely 1 and 2, belong to the same set as their sum 3 does. We consider 1+2=3 and 2+1=3 the same equation, and will always
output the numbers on the left-hand-side of the equation in ascending order. Therefore in this example, it is claimed that the set {1,2,3} has an unique additive equation 1+2=3.

    It is not guaranteed that any integer set has its only additive equation. For example, the set {1,2,5} has no addtive equation and the set {1,2,3,5,6} has more than one additive equations such as 1+2=3, 1+2+3=6, etc. When the number of integers in a set
gets large, it will eventually become impossible to find all the additive equations from the top of our minds -- unless you are John von Neumann maybe. So we need you to program the computer to solve this problem.

Input



The input data consists of several test cases. 

The first line of the input will contain an integer N, which is the number of test cases. 

Each test case will first contain an integer M (1<=M<=30), which is the number of integers in the set, and then is followed by M distinct positive integers in the same line.

Output



For each test case, you are supposed to output all the additive equations of the set. These equations will be sorted according to their lengths first( i.e, the number of integer being summed), and then the equations with the same length will be sorted according
to the numbers from left to right, just like the sample output shows. When there is no such equation, simply output "Can't find any equations." in a line. Print a blank line after each test case.

Sample Input

3
3 1 2 3
3 1 2 5
6 1 2 3 5 4 6

Output for the Sample Input

1+2=3

Can't find any equations.

1+2=3
1+3=4
1+4=5
1+5=6
2+3=5
2+4=6
1+2+3=6
第一个数字表示输入数据的数量,之后每行第一个数表示有几个可供使用的数字,然后用这些数字组成加法等式,同一个数字不能重复使用,但是多次输入的数字可以重复使用。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int a[50],b[50],vis[1000010],flog,n;
void bfs(int pos,int num,int sum,int key)
{/*pos指向a数组,选择a中的数,num表示b数组中数字个数,sum表示当前和
key表示最多使用的数字个数*/
if(num>key)
return ;
if(sum>a[n-1])/*最大的和a数组的最后一个数*/
return ;
if(num==key&&vis[sum])
{
flog=0;/*当找到一种符合情况的时,flog赋值*/
int i;
for(i=0;i<key-1;i++)
printf("%d+",b[i]);
printf("%d=%d\n",b[key-1],sum);
return ;
}
if(pos>=n)
return ;
b[num]=a[pos];
bfs(pos+1,num+1,sum+a[pos],key);/*对于当前操作的数,有两种选择,
要或不要,要的话num+1,否则不加,之后这个数会被下一个数覆盖*/
bfs(pos+1,num,sum,key);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int i;
scanf("%d",&n);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(vis,0,sizeof(vis));
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
vis[a[i]]=1;/*vis数组标记*/
}
flog=1;
sort(a,a+n);
for(i=2;i<n;i++)
bfs(0,0,0,i);
if(flog)
printf("Can't find any equations.\n");
printf("\n");
}
return 0;
}

Additive equations--zoj的更多相关文章

  1. ZOJ1204——Additive equations(DFS)

    Additive equations Description We all understand that an integer set is a collection of distinct int ...

  2. zoj 1204 Additive equations

    ACCEPT acm作业 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=204 因为老师是在集合那里要我们做这道题.所以我很是天 ...

  3. ZOJ 1204 一个集合能组成多少个等式

    Additive equations Time Limit : 20000/10000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other ...

  4. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  5. 【转】POJ百道水题列表

    以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...

  6. ZOJ ACM 1204 (JAVA)

    毕业好几年了,对算法还是比較有兴趣,所以想又一次開始做ACM题.俺做题比較任意,一般先挑通过率高的题来做. 第1204题,详细描写叙述请參考,ZOJ ACM 1204 1)难度分析 这个题目,基本的难 ...

  7. ZOJ People Counting

    第十三届浙江省大学生程序设计竞赛 I 题, 一道模拟题. ZOJ  3944http://www.icpc.moe/onlinejudge/showProblem.do?problemCode=394 ...

  8. [LeetCode] Additive Number 加法数

    Additive number is a positive integer whose digits can form additive sequence. A valid additive sequ ...

  9. HDU 4569 Special equations(取模)

    Special equations Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. 利用POPAnimatableProperty属性来实现动画倒计时

    POPAnimatableProperty *prop = [POPAnimatableProperty propertyWithName:@"countdown" initial ...

  2. Java基础学习(二)——对象

    类:是抽象的概念集合,表示的是一个共性的产物,类之中定义的是属性和行为(方法): 对象:对象是一种个性的表示,表示一个独立的个体,每个对象拥有自己独立的属性,依靠属性来区分不同对象. 对象=实例 对象 ...

  3. android开源新闻小程序、3D翻转公告效果、小说检索、Kotlin开发TODO清单等源码

    Android精选源码 开源新闻小程序源码分享 android动态壁纸.锁屏动画.来电秀等源码 android笔记App效果源码 Android实现3D版翻页公告效果 android小说搜索阅读源码 ...

  4. oracle 提示登录密码过期解决

    1.登录到oracle的 服务器 2.切换到oracle 用户 3.设置到当前操作的实例名:export ORACLE_SID=XXX 4.连接数据库的命令行模式:sqlplus /nolog 5.s ...

  5. JDK自带工具

    工具名称 描述 appletviewer.exe 用于运行并浏览applet小程序. apt.exe 注解处理工具(Annotation Processing Tool),主要用于注解处理. extc ...

  6. AI: DL方法与问题空间探索

    所谓问题的解决是生存参数空间的一种状态转移到另外一种状态,而目的状态恰好是主体所希望的.完成这种转换的一系列脚本变化过程叫做场景序列,也叫通路.驱动这一些列场景转换的主体参与过程,被称为主动执行.而主 ...

  7. Git及Github环境搭建(Windows系统)

    一.github账号注册 1.打开网址https://github.com  注册账号: 二.本地安装Git 1.安装包下载地址:链接:https://pan.baidu.com/s/1smpnJL7 ...

  8. package、folder和source folder的区别

    在用myeclipse工具开发java的过程中,新建目录时发现会有package,folder和source folder等不同类型的选项, 因此在网上搜集了一些资料:如下 以下文章转自:https: ...

  9. vue 导航菜单默认子路由

    export default new Router({ routes: [ { path: '/', name: 'index', component: index, children: [ { pa ...

  10. 7.ES几种常见的搜索方式

    主要知识点  1, query string search (1)  GET /ecommerce/product/_search (2) GET/ecommerce/product/_search? ...