废话不说,先来个示例,有个感性认识再介绍。

这个示例来自spark自带的example,基本步骤如下:

(1)使用以下命令输入流消息:

$ nc -lk 9999

(2)在一个新的终端中运行NetworkWordCount,统计上面的词语数量并输出:

$ bin/run-example streaming.NetworkWordCount localhost 9999

(3)在第一步创建的输入流程中敲入一些内容,在第二步创建的终端中会看到统计结果,如:

第一个终端输入的内容:

hello world again

第二个端口的输出

-------------------------------------------
Time: 1436758706000 ms
-------------------------------------------
(again,1)
(hello,1)
(world,1)

简单解释一下,上面的示例通过手工敲入内容,并传给spark streaming统计单词数量,然后将结果打印出来。

附上代码:

package org.apache.spark.examples.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StorageLevel /**
* Counts words in UTF8 encoded, '\n' delimited text received from the network every second.
*
* Usage: NetworkWordCount <hostname> <port>
* <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example org.apache.spark.examples.streaming.NetworkWordCount localhost 9999`
*/
object NetworkWordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount <hostname> <port>")
System.exit(1)
} StreamingExamples.setStreamingLogLevels() // Create the context with a 1 second batch size
val sparkConf = new SparkConf().setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(1)) // Create a socket stream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
// Note that no duplication in storage level only for running locally.
// Replication necessary in distributed scenario for fault tolerance.
val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
 
 
(一)构建自己的项目
本示例使用java+maven来构建一个wordcount
1、创建项目,在pom.xml添加如下的依赖关系

<dependency>

<groupId>org.slf4j</groupId>

<artifactId>slf4j-api</artifactId>

<version>1.7.0</version>

</dependency>

<dependency>

<groupId>org.slf4j</groupId>

<artifactId>slf4j-log4j12</artifactId>

<version>1.7.0</version>

</dependency>

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.17</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-core_2.10</artifactId>

<version>1.4.0</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming_2.10</artifactId>

<version>1.4.0</version>

</dependency>

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka_2.10</artifactId>

<version>1.4.0</version>

</dependency>

 

<dependency>

<groupId>org.apache.kafka</groupId>

<artifactId>kafka_2.10</artifactId>

<version>0.8.2.1</version>

</dependency>

 
2、写代码,此部分代码使用了官方的代码:
package com.netease.gdc.kafkaStreaming;

import java.util.Map;
import java.util.HashMap;
import java.util.regex.Pattern; import scala.Tuple2;
import com.google.common.collect.Lists;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils; /**
* Consumes messages from one or more topics in Kafka and does wordcount.
*
* Usage: JavaKafkaWordCount
* is a list of one or more zookeeper servers that make quorum
* is the name of kafka consumer group
* is a list of one or more kafka topics to consume from
*is the number of threads the kafka consumer should use
*
* To run this example:
* `$ bin/run-example org.apache.spark.examples.streaming.JavaKafkaWordCount zoo01,zoo02, \
* zoo03 my-consumer-group topic1,topic2 1`
*/ public final class JavaKafkaWordCount {
private static final Pattern SPACE = Pattern.compile(" "); private JavaKafkaWordCount() {
} public static void main(String[] args) {
if (args.length < 4) {
System.err.println("Usage: JavaKafkaWordCount
");
System.exit(1);
} SparkConf sparkConf = new SparkConf().setAppName("JavaKafkaWordCount");
// Create the context with a 1 second batch size
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000)); int numThreads = Integer.parseInt(args[3]);
Map topicMap = new HashMap();
String[] topics = args[2].split(",");
for (String topic: topics) {
topicMap.put(topic, numThreads);
} JavaPairReceiverInputDStream messages =
KafkaUtils.createStream(jssc, args[0], args[1], topicMap); JavaDStream lines = messages.map(new Function<tuple2, String>() {
@Override
public String call(Tuple2 tuple2) {
return tuple2._2();
}
}); JavaDStream words = lines.flatMap(new FlatMapFunction() {
@Override
public Iterable call(String x) {
return Lists.newArrayList(SPACE.split(x));
}
}); JavaPairDStream wordCounts = words.mapToPair(
new PairFunction() {
@Override
public Tuple2 call(String s) {
return new Tuple2(s, 1);
}
}).reduceByKey(new Function2() {
@Override
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
}); wordCounts.print();
jssc.start();
jssc.awaitTermination();
}
}
 
3、上传到服务器中然后编译
mvn clean package
4、提交job到spark中
/home/hadoop/spark/bin/spark-submit --jars ../mylib/metrics-core-2.2.0.jar,../mylib/zkclient-0.3.jar,../mylib/spark-streaming-kafka_2.10-1.4.0.jar,../mylib/kafka-clients-0.8.2.1.jar,../mylib/kafka_2.10-0.8.2.1.jar  --class com.netease.gdc.kafkaStreaming.JavaKafkaWordCount --master spark://192.168.165.102:7077  target/kafkaStreaming-0.0.1-SNAPSHOT.jar 192.168.172.111:2181/kafka my-consumer-group test 3
当然,前提是kafka集群已经正常运行,且存在test这个topic
 
5、验证
打开一个console producer,输入内容,然后观察wordcount的结果。
结果形式如下:
(hi,1)

  

Spark Streaming教程的更多相关文章

  1. [spark]Spark Streaming教程

      (一)官方入门示例 废话不说,先来个示例,有个感性认识再介绍. 这个示例来自spark自带的example,基本步骤如下: (1)使用以下命令输入流消息: $ nc -lk 9999 (2)在一个 ...

  2. cdh环境下,spark streaming与flume的集成问题总结

    文章发自:http://www.cnblogs.com/hark0623/p/4170156.html  转发请注明 如何做集成,其实特别简单,网上其实就是教程. http://blog.csdn.n ...

  3. Spark Streaming入门

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文将帮助您使用基于HBase的Apache Spark Streaming.Spark Streaming是Spark API核心的一个扩 ...

  4. 【概念、概述】Spark入门教程[1]

    本教程源于2016年3月出版书籍<Spark原理.机制及应用> ,如有兴趣,请支持正版书籍. 随着互联网为代表的信息技术深度发展,其背后由于历史积累产生了TB.PB甚至EB级数据量,由于传 ...

  5. spark streaming之 windowDuration、slideDuration、batchDuration​

    spark streaming 不同于sotm,是一种准实时处理系统.storm 中,把批处理看错是时间教程的实时处理.而在spark streaming中,则反过来,把实时处理看作为时间极小的批处理 ...

  6. [Spark] 07 - Spark Streaming Programming

    Streaming programming 一.编程套路 编写Streaming程序的套路 创建DStream,也就定义了输入源. 对DStream进行一些 “转换操作” 和 "输出操作&q ...

  7. flink和spark Streaming中的Back Pressure

    Spark Streaming的back pressure 在讲flink的back pressure之前,我们先讲讲Spark Streaming的back pressure.Spark Strea ...

  8. Flink与Spark Streaming在与kafka结合的区别!

    本文主要是想聊聊flink与kafka结合.当然,单纯的介绍flink与kafka的结合呢,比较单调,也没有可对比性,所以的准备顺便帮大家简单回顾一下Spark Streaming与kafka的结合. ...

  9. Spark踩坑记——Spark Streaming+Kafka

    [TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark strea ...

随机推荐

  1. 洛谷P1722 矩阵 II

    题目背景 usqwedf 改编系列题. 题目描述 如果你在百忙之中抽空看题,请自动跳到第六行. 众所周知,在中国古代算筹中,红为正,黑为负…… 给定一个1*(2n)的矩阵(usqwedf:这不是一个2 ...

  2. Kinect 开发 —— 面部追踪

    SDK1.5中新增了人脸识别类库:Microsoft.Kinect.Toolkit.FaceTracking使得在Kinect中进行人脸识别变得简单,该类库的源代码也在Developer Toolki ...

  3. java(异常体系及权限修饰符)

    java异常体系 异常的体系: 异常体系: --------| Throwable 所有错误或者异常的父类 --------------| Error(错误) --------------| Exce ...

  4. java(内部类)

    内部类: 一个类定义在另外一个类的内部就称作为内部类. 内部类的类别: 1.成员内部类: 2.局部内部类: 1.成员内部类: 成员内部类的访问方式: 方式一:在成员内部类的外侧提供一个方法创建内部类的 ...

  5. Nim游戏算法实现

  6. 轻松学习Linux之详解系统引导过程

    轻松学习Linux之详解系统引导过程-1 轻松学习Linux之详解系统引导过程-2 本文出自 "李晨光原创技术博客" 博客,谢绝转载!

  7. redirect_uri 参数错误

    http://www.cnblogs.com/zitjubiz/p/5935712.html http://blog.csdn.net/u014033756/article/details/52038 ...

  8. hard-negative mining 及伪代码实现

    Histogram of Oriented Gradients and Object Detection 获得 records 对于目标检测(object detection)问题,所谓的 hard- ...

  9. (错误记录)git push 报错 403

    在push的时候遇到错误: RPC failed; HTTP curl The requested URL returned error: Forbidden 如果是自己创建的项目的话,可以在网上找到 ...

  10. COGS——C2098. Asm.Def的病毒

    http://www.cogs.pro/cogs/problem/problem.php?pid=2098 ★☆   输入文件:asm_virus.in   输出文件:asm_virus.out    ...