题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1407

Description

克里特岛以野人群居而著称。岛上有排列成环行的M个山洞。这些山洞顺时针编号为1,2,…,M。岛上住着N个野人,一开始依次住在山洞C1,C2,…,CN中,以后每年,第i个野人会沿顺时针向前走Pi个洞住下来。每个野人i有一个寿命值Li,即生存的年数。下面四幅图描述了一个有6个山洞,住有三个野人的岛上前四年的情况。三个野人初始的洞穴依次为1,2,3;每年要走过的洞穴数依次为3,7,2 寿命值依次为4,3,1。 aaarticlea/JPG;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAFiAhEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAorIvvFfhzS7t7TUNf0q0uUxvhuLyON1yMjKkgjgg1W/wCE78H/APQ16H/4MYf/AIqgDoKK5/8A4Tvwf/0Neh/+DGH/AOKo/wCE78H/APQ16H/4MYf/AIqgDoKK5/8A4Tvwf/0Neh/+DGH/AOKo/wCE78H/APQ16H/4MYf/AIqgDoKK5/8A4Tvwf/0Neh/+DGH/AOKrV07VdO1i2Nzpl/a30AYoZbaZZVDDBIypIzyOPegC3RRRQAUUUUAFFFFABRRRQAUUVxlh4b0LWfEniq41XRdOvpk1KONZLq1SVlX7HbHaCwJAySce5oA7Oiuf/wCEE8H/APQqaH/4Lof/AImj/hBPB/8A0Kmh/wDguh/+JoA6Ciuf/wCEE8H/APQqaH/4Lof/AImj/hBPB/8A0Kmh/wDguh/+JoA6Ciuf/wCEE8H/APQqaH/4Lof/AImj/hBPB/8A0Kmh/wDguh/+JoA6CiuY8I2Vppt/4os7G1htbWLVVEcEEYREzZ2xOFHAyST9Sa6egAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDn/AA9/yHPFn/YVj/8ASK1roK5/w9/yHPFn/YVj/wDSK1qTxf4lh8IeGLrXbi3kuILZ4hJHGQG2vIqEjPBIDZxxnGMjOaANyiuD0b4o6fqmvRaNcW0em3jXE8LJd39vkGOQxhAqOzeazFMIQoI3lWcKN3UR63C/iq50FvLWeGyhvEzIN0iu8iNheuFMa5PP3x07gGpRWH4yvL7TvBWt3+mXEdveWtlLPFK8XmBSilvu5AzgHGcgHBIIGDrS3UENxBBJKqyzkiJO7YGT+QHX6eooAmrn/D3/ACHPFn/YVj/9IrWtizuvtcDSbNm2WSPGc/cdkz+O3P41j+Hv+Q54s/7Csf8A6RWtAHQUUUUAFFFFABRRRQAUUUUAFc/4e/5Dniz/ALCsf/pFa10Fc/4e/wCQ54s/7Csf/pFa0AXPEOv2PhfRJtY1NpFs4HjWV0XcUDuqbsdSAWBOMnAOATxWfo3jbTNdvYrOyt9SE7vOCtxZSQBUhco75cAEbti7VJYF13KuG2yeONGTxB4L1TSpLSe6+0xbEjgK7w+QVcbnRTtYBsFhnbjnODy+i+Ak0i/0nUb3w/Y3l9bWl9PdSxMs7yXbTxSRFZJgrs2BJtZzlehc/eYA7yPUoZdZudLVZPPt7eG4diBtKyNIqgc5zmJs8dx17GpDUnt1TS5LSKdnAaW6RpFjXBOQilS5JAGNy4yTk42nm00TUV1xvGJt9+qtEbYaeXXK2Z2MIQ4O3zg6tICTtzI0ZYrtkXc18a0+ltHoItBeO4UyXMxjEafxMpCOC+OBlSATkhgNpAG6Dqr6lpaTXflJcC5uLRtnyrI8MskZZQSSN3lltuTgHGTjJ0La5S6iaRAwAkeP5vVGKn9Qa53TfC7/AGHRxfLHaTaajwR29hdStEsPKxqHba24Jsy3G4g5GMY6SCCO2hWKJdqL75JJ5JJPJJPJJ5JNAGH4e/5Dniz/ALCsf/pFa10Fc/4e/wCQ54s/7Csf/pFa10FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHP8Ah7/kOeLP+wrH/wCkVrVjxVpP9veF9R0r7LBdfa4jF5c8vlLyfvBtj7WX7ynafmUfWqr6Fq9vqupXema1BbxX863DxTWPmlXEUcXDb14xGp6dzTv7O8U/9DFY/wDgrP8A8doAz9F8J3nh5dJ+zPY3Dafp99AQiG1SWaaWKVSFG8RqTG2dvAz8qgfKLCeG7xLxvEAkgPiJs5yxMHkkJm1DEbhH8isHAyJCzhcM0Zsf2d4p/wChisf/AAVn/wCO0f2d4p/6GKx/8FZ/+O0AXPEmlTa54a1LSYLmO1e9t3tzM8RlCK42sdoZcnaTjng4PPQk2h2t+9lcanFBcXlumHdYtqSEqQRsJb5cnIBJI9euefvdf1fQrwW0l9Y65c8FrC1tZI7hQe/yGQAf74Uf7QrasvE+n3VxHaXIm06+k+7aXyeU7H0Q5Kv/AMALUAbEcaRRrHGioiAKqqMAAdABWD4e/wCQ54s/7Csf/pFa1mXMniyPX5LSTXNOs7eeQmxdtMaQSDrsLecMOPTHzAZHcCex8PeJtPuL+5i8R6c8t9cC4lEmksV3CNI+AJwfuxr365oA6yiuf2+MIP8Alpod97eXNa5/WXFH/CRXtn/yFtAvrZB1ntcXcQ/BP3n4lAKAOgoqrYalZarbC5sLqG5hzjfE4YAjqD6Eeh5q1QAUUVk3/iTTdPuTaNLJcXuM/ZLSJppQD0JVQdo92wPegDWorn/7T8SXf/Hn4fhtU/valeKrfgkQfP4sKPs3i+Tk6roluD/AumyykfRvPX/0GgDoK5hbDxFp2s6xcadDpc9tf3SXK/aLiSN0IgiiIIVCP+WWevep/wCz/Fa8r4h00n0k0liP0nB/Wjb4wg/5aaHfe3lzWuf1lxQA7TNV1R9dl0rVbSzikFstzG9rO0gI3FSDuVcHp+dbNxcQ2ltLc3EqxQRIXkkc4CqBkkn6VylneahN8QrRdQ0s2TtpVxhlnWWOTbLB90jDcb+6r179r0rr4j1l7RGDaZpso+04ORPcDBWP/dThm9W2jswoASK/8U3ka3Ntpemw28vzRJd3UiShe29RGQpI5xnjOKf53jD/AJ8dD/8AAyb/AONV0FFAHP8AneMP+fHQ/wDwMm/+NUed4w/58dD/APAyb/41XQUUAYvh7TtQspNWutS+zC41C8FxstnZkQCGKIDLAEn91np3raoooAKKKKACiiigAooooAKKKKACiiigAooooAKKo6lrOm6OiNqF9Bb7ziNXf5pD6KvVj7AGs3/hJbm5/wCQb4d1a5U9JJo1tU/ESsr/AJKaAOgorn/tni2XmPRdJgXsZtTct+KrDj/x6jzvGH/PhoZ9vtsw/wDaVAHQUVz/APaniWDm48NQSj/px1JZD/5ESOlHi/T4CBqkF7pJ6Fr+ApGPrKuY/wDx6gDfopkUsc8SywyLJG4yrochh6gin0AFFFUdS1nTdHRG1C+gt95xGrv80h9FXqx9gDQBeorn/wDhJbm5/wCQb4d1a5U9JJo1tU/ESsr/AJKaPtni2XmPRdJgXsZtTct+KrDj/wAeoA6Ciuf87xh/z4aGfb7bMP8A2lR/aniWDm48NQSj/px1JZD/AOREjoA6CisAeL9PgIGqQXuknoWv4CkY+sq5j/8AHq3IpY54llhkWSNxlXQ5DD1BFAD6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArCvZ7jV9Wl0e1ne3trdFa9njOJCW5WJD/CSMlm6gEY5OV3a55HXQ/E961yQlpq7xyRzH7qzqixmNj23KqFfUhh1xkA17DTbLSrYW1haxW8OclY1xknqT6k9yeTT7yytdQtXtb22hubdxhopkDq31B4qeigDmLzwpKtpJb6Zfutq45sb7dPB6jaciSMg9CrYXqF4p3hu916O5l0rXdOkUxrut79JBLHMo6qzAAhhnqVXcO2Qa6WuZ0aJtHu/Flw9tePFJqgniG15XlBtrcHZnJI3hlGPlXbjgLwAdNRWXY39xf3Fu4gngi+zsbiOWJk2yEptALAbsfPyOPXtWpQBk3+gwXNyb+zYWWqAYW7iXlwOiyDjzF9j07EHmpdF1NtUsWeWIQ3UEjQXMQOQkq9QD3B4IPcEdOlWb2+ttOtHuruZYYU6s35AAdSSeAByTWb4btJ4ra8vrqJoZ9Sumu2hbrECqoin/a2IuffPXrQAy9nuNX1aXR7Wd7e2t0Vr2eM4kJblYkP8JIyWbqARjk5XTsNNstKthbWFrFbw5yVjXGSepPqT3J5NZCOuh+J71rkhLTV3jkjmP3VnVFjMbHtuVUK+pDDrjPQ0AFFFFABRXIw6Xa6D4oe50zTJYLWDTnN40ELM99NJIvlktyZpFEUu5nOR5wOTvYjasb+4v7i3cQTwRfZ2NxHLEybZCU2gFgN2Pn5HHr2oAy/Etpq02v6PNpKbXMVxbS3Jxi2V/LJfB6kbOB3OM8Zq0fClhbRRPpQ+wX0KBI7qMZZwO0v/PUHnO7nkkEHmt6q97fW2nWj3V3MsMKdWb8gAOpJPAA5JoAraLqbapYs8sQhuoJGguYgchJV6gHuDwQe4I6dK0axfDdpPFbXl9dRNDPqV0120LdYgVVEU/7WxFz7569a2qACiuOstB07W/EXiebUYGneHUY4oyZXARPslu2AAQAMsx+pNaP/AAhHh3/oH/8AkaT/AOKoA6Ciuf8A+EI8O/8AQP8A/I0n/wAVR/whHh3/AKB//kaT/wCKoA6Ciuf/AOEI8O/9A/8A8jSf/FUf8IR4d/6B/wD5Gk/+KoA6Ciuf/wCEI8O/9A//AMjSf/FVF4Tto7G98S2VvuW2t9TVYY2csEBtLdiBknjczH6k0AdLRRRQAUUUUAFFFFABWNqF7dXeonR9MkEUqoJLq6Khvs6NnaFB4MjYOM8ADJB4DbNc/ZEab4u1SC4IX+1DHc2rno5SNY3jHuNgbHcMSOhwAXtN0LT9Ld5oIS91IP3l1Mxkmk/3nbJx6DoOwFaVFFABRRXM6NfGyu/Fkmo6hLJb2uqDY87D90jW1u4RQAAAC5AAGTnnLEkgHTUEAggjIPUGsux1mHU7i3+xvHJA9u0suCC0TZTarYOFJBfg/wB0+hrUoAwpfDwsZXu9AZbG4JLNb5Itpz33IOFJ/vqAc8ncODoaVqUeq2C3CI0Thmjlhf70UinDIfcEdeh4I4Iq1LLHbwvNNIscSKWd3OAoHUk9hWL4XikaDUNRdGjTUr1rqGNhgiPYiKSO24Jux1+bnnNAEmoXt1d6idH0yQRSqgkuroqG+zo2doUHgyNg4zwAMkHgNPpuhafpbvNBCXupB+8upmMk0n+87ZOPQdB2AqjZEab4u1SC4IX+1DHc2rno5SNY3jHuNgbHcMSOhx0FABRRRQAUVyMJj0HxQ8f9p3ktrHpz3OpveXLyfvHkUQMqt8qbtlz8sQVeACo+QVtWOsw6ncW/2N45IHt2llwQWibKbVbBwpIL8H+6fQ0AahAIIIyD1BrCl8PCxle70Blsbgks1vki2nPfcg4Un++oBzydw4O7TJZY7eF5ppFjiRSzu5wFA6knsKAKulalHqtgtwiNE4Zo5YX+9FIpwyH3BHXoeCOCKw4m1zVtb1yO21lbK3sbxLaOMWiyEg28MpJJPXMh/ACrnheKRoNQ1F0aNNSvWuoY2GCI9iIpI7bgm7HX5uec0zw9/wAhzxZ/2FY//SK1oAP7I8Rf9DR/5IR/40f2R4i/6Gj/AMkI/wDGtyaeG2QPPLHEhdUDOwUFmYKo57liAB3JAqNb+zfy9t3A3myvBHiQHfIm7cg9WGx8jqNrehoAx/7I8Rf9DR/5IR/40f2R4i/6Gj/yQj/xrcE8LXD26yxmdEV3jDDcqsSFJHUAlWAPfafSq+pX7afbrJHY3d7K7hEgtVUsxwScliqKAATlmA6AZJAIBl/2R4i/6Gj/AMkI/wDGj+yPEX/Q0f8AkhH/AI1qaXqUOrWC3cKyIC7xvHIAGjkRyjocEjKsrLkEg4yCRg1aSRJFLI6sASuVOeQcEfgQRQBieG7u/mn1qz1C6W6ksL4W6TLEIyym3hl5A4zmQj6AVu1z/h7/AJDniz/sKx/+kVrXQUAFFFFABRRRQAUUVjXfizQLKcwS6tatcDrBC/my/wDfCZb9KANmo7i3hu7eS3uIkmhkUq8cihlYHqCD1rD/AOEutH/49tM1u4HYrpkyA/Quq5o/4Sr10HXAP+vP/wCvQAf2Lqmmf8gTVAYB0s9RDTIPZJM71/HeB2Ao/t3VrXjUfDV3/wBdbCZLmP8AIlH/APHPyo/4TPSU/wCPpNRs/e6024jX/vopt/WtPT9Y0zVoy+m6ha3ijqbeZXx9cHigDM/4TLSl4mi1WBv7sulXK/kfLwfwo/4TXQT925uHPcJZTsV+oCcfjXQUUAc//wAJday/8eema1dHts02WMH6NIFU/XNH2zxNf8W2lWulof8AlrfzCaRf+2UR2n/v4K6CigDHsvD8cV2l9qN1NqV8nKSz4CRf9c4x8qemcFscFjWxRRQBHcW8N3byW9xEk0MilXjkUMrA9QQetYf9i6ppn/IE1QGAdLPUQ0yD2STO9fx3gdgK6CigDn/7d1a141Hw1d/9dbCZLmP8iUf/AMc/Kj/hMtKXiaLVYG/uy6Vcr+R8vB/CugooA5//AITXQT925uHPcJZTsV+oCcfjR/wl1rL/AMeema1dHts02WMH6NIFU/XNdBRQBz/2zxNf8W2lWulof+Wt/MJpF/7ZRHaf+/gqxZeH44rtL7UbqbUr5OUlnwEi/wCucY+VPTOC2OCxpLvxZoFlOYJdWtWuB1ghfzZf++Ey36VB/wAJdaP/AMe2ma3cDsV0yZAfoXVc0AdBRXP/APCVeug64B/15/8A16P+Ez0lP+PpNRs/e6024jX/AL6Kbf1oAPD3/Ic8Wf8AYVj/APSK1q54h1+x8L6JNrGptItnA8ayui7igd1TdjqQCwJxk4BwCeKzPCN9aalqHim7sbmG5tpNVTZLC4dWxZ2wOCPQgj8Kn8caMniDwXqmlSWk919pi2JHAV3h8gq43OinawDYLDO3HOcEAj0bxtpmu3sVnZW+pCd3nBW4spIAqQuUd8uACN2xdqksC67lXDbdiPUoZdZudLVZPPt7eG4diBtKyNIqgc5zmJs8dx17cHovgJNIv9J1G98P2N5fW1pfT3UsTLO8l208UkRWSYK7NgSbWc5XoXP3m2E0TUV1xvGJt9+qtEbYaeXXK2Z2MIQ4O3zg6tICTtzI0ZYrtkUA6DWZry3055bO5sbTZl5rq+BaOCMAlmKgru6AcsoAJbJ27TD4e1V9V0Gwv7nyle7BMTJ8qzpyUkVSSV3oBJsJJUNgkkE1a1KTUordW0u0tLmfeAyXVy0ChcHkMsbknOOMdzzxzh6f4REcVlNeXEi3UVxdXEiW8zhAZ5JJCisMH5TJjfgFgvIGcAA6K2uUuomkQMAJHj+b1Rip/UGsXw9/yHPFn/YVj/8ASK1rcggjtoViiXai++SSeSSTySTySeSTWH4e/wCQ54s/7Csf/pFa0AdBRRRQAUUUUAFFFVr3UbHTYhLfXlvaxk4Dzyqg/MmgCzVa/wBPtdTtWtruISREgjkgqw6MpHKsOoI5FZH/AAnHhluYtZtZ1/vW5My/mgIo/wCE20Afeu5kHYvaTKG+hKc/hQAeT4i0ni2lh1m1HRLp/JuFHoHA2v7ZCn1Y0f8ACW2tvxqen6ppzd/PtGdB/wBtIt6f+PVJD4y8MzyCJNe05ZT0ikuFR/8AvliD+lbasrqGUgqRkEHgigDEi8Z+GJshPEOl7l+8rXaKy/UE5FSf8JZ4b/6GDSv/AANj/wAa1JYIZ8ebFHJjpvUHFR/YLP8A59IP+/YoAyG8beGtxWHWba6YHBWzJuGz6YjDHPtSf8JBqF78uk+H7189J7//AESIfUNmT/xz8q31UKoVQAoGAB2paAMKLQ7m+mS4168W7KMGSzhTZbIR0JBy0hHqxxkZCg1u0UUAVr/T7XU7Vra7iEkRII5IKsOjKRyrDqCORWR5PiLSeLaWHWbUdEun8m4UegcDa/tkKfVjXQUUAc//AMJba2/Gp6fqmnN38+0Z0H/bSLen/j1SReM/DE2QniHS9y/eVrtFZfqCcityo5YIZ8ebFHJjpvUHFAGX/wAJZ4b/AOhg0r/wNj/xqBvG3hrcVh1m2umBwVsybhs+mIwxz7Vr/YLP/n0g/wC/YqdVCqFUAKBgAdqAMD/hINQvfl0nw/evnpPf/wCiRD6hsyf+OflT4tDub6ZLjXrxbsowZLOFNlshHQkHLSEerHGRkKDWpe6jY6bEJb68t7WMnAeeVUH5k1kf8Jx4ZbmLWbWdf71uTMv5oCKAOgrn/D3/ACHPFn/YVj/9IrWj/hNtAH3ruZB2L2kyhvoSnP4VzGl/EPwrp3iHxHFdasqSXOoJNCohkYun2W3TIwp/iRh9RQBr/FPTU1f4Z63ZSXkFnuiV0lnkVELq6sqFmZVXcyhck8bvwri/B3h2LRdc0nV5LyTR/tNlqV7dRrp8NkscS3UDCJ1kjLqgVuQXbbt+R9vJ9O0XxLpPiB7ldMuWma2KrMGhePYSMgHco5xzUuoa9o+knGo6rZWjdlnnVCfoCck0AcxDfXCeLbnxYZNvhma0WxaQKCHEbb47snqIcyzoSOMBZOY23J0mv6wdD0trtLG7vZS4jjhtoJJSWPdvLViqDqWwcAcBiQpp/wDCa6GfuzXbjsyWFwyn6EJg0f8ACaaJ/fvv/Bbc/wDxugDN0O11VtM0Z9PmlhgWS4a8N7ZtBJNMWkLztEWBCyOWcJxt3rxgYXqrK1+yWwiL72LvI7YwCzMWbA7DJOBzx3NY/wDwmmif377/AMFtz/8AG6P+E00T+/ff+C25/wDjdAB4e/5Dniz/ALCsf/pFa10Fc34UnW8vfEl7FHMtvc6mrwtNC8RdRa26EgMAcblYdOxrpKACiiigArN1PVWtJYrOzg+1ajOCYod21VUYy7t/CgJHOCTnABrSrn9J+Xxf4hWf/Xt9naHPe38vAx7CTzvzoAP+EZ/tD5/EF7LqLHrbIWhtV9vKB+cf9dC34dK2bSytbCAQWdtDbxDpHDGEUfgKnooAKKK5fw34si8TajJLZ3UA05oi1rE0DiS4UEAzLISEKgnaUUMyErvKMTGoB1FZmoeHtI1SQS3lhC86/duFGyVP92RcMv4EVbF7C9xBCjb/AD4mmR1IKlVKjr77xirFAHP/AGfV9CHmW882q6ev3rab5rmMeqSf8tMf3W+Y/wB48A7VpdwX9pDd2sqywTKHR16EGpq5/wAK8jWZIv8AjzfU5mtsdCuFDkexlEp/GgDoKKKKACiiigAooooAKKKKAM3U9Va0lis7OD7VqM4Jih3bVVRjLu38KAkc4JOcAGqP/CM/2h8/iC9l1Fj1tkLQ2q+3lA/OP+uhb8OlGk/L4v8AEKz/AOvb7O0Oe9v5eBj2EnnfnXQUAQWlla2EAgs7aG3iHSOGMIo/AVPRRQAUVzekaxqU/iW70m8n025eC3We4SyVlNgzn93E7Mx80su8hgqYEeSo8xcbgvYXuIIUbf58TTI6kFSqlR1994xQBzE0mr+G9Q1+/Flp0mnXd0t39ouNQ8jywIIYiGBQgcxk5z3FQ6L8RrG+E51MWmnlSBBGt350s47sIgokA6dV5+mCen1TRdM1uKOHVLC3vYo33rHcRh1DdM4PBqe0srSwhENnaw28Q/ghjCD8hQBhQ+MI9QhSbR9G1bUYnGUlS3ECMPXMxTI9xn2zUn9peJ25Xw5aAHoH1PDfjiMj9TR4V5GsyRf8eb6nM1tjoVwocj2MolP410FAHP8A9o+Kf+hdsf8AwaH/AONUf2j4p/6F2x/8Gh/+NV0FFAHP/wBo+Kf+hdsf/Bof/jVSeHLLULebWbvUoIbeW/vhcLFDMZQiiCGLltq85iJ6dxW5RQAUUUUAFUNT1WLTVjTy5Li6nJWC2hGXlI64zwAMjLEgDPJ5FX65/Sv33i/X5J+ZoPIhgB/hgMYbI9MyF8+uwegwAH9laxqvz6tqb2cR/wCXLTHKDHo0xAcn3XZVmy8LaFp8pmt9KtRcEYM7p5krfV2yx/E1r0UAFFFYekeI4dd1S7h082ktlbIu6YXQMrM3KsIgOImXJVyw3YyqlCrkA2JoIbmMxzxRyxnqrqGB/A1iN4O0eJjJpsUmkzE536bIYBn1KD5G/wCBKa2zPGtwluW/eujOq46hSAT/AOPD86koA5/7VrGh86iRqWnj713DHtniHq8ajDj1ZMEf3MZNbsUsc8KTQyLJFIoZHQ5DA8gg9xT65/wr+7TV7aL/AI87bUpY7Ydgm1WZR6BZGkUDsBigDoKK5xte1i41XUrTTdFt7iKwnW3eWa+8osxijl4Xy24xIB17Gn/2j4p/6F2x/wDBof8A41QB0FFc/wD2j4p/6F2x/wDBof8A41R/aPin/oXbH/waH/41QB0FFc//AGj4p/6F2x/8Gh/+NUf2j4p/6F2x/wDBof8A41QB0FFc/wD2j4p/6F2x/wDBof8A41VrQtXuNUOoRXdktpc2N0LaREm81STFHKCGwO0g7dQaAJ9T1WLTVjTy5Li6nJWC2hGXlI64zwAMjLEgDPJ5FZ39laxqvz6tqb2cR/5ctMcoMejTEByfddlGlfvvF+vyT8zQeRDAD/DAYw2R6ZkL59dg9BjoKAMiy8LaFp8pmt9KtRcEYM7p5krfV2yx/E1r0UUAFY/iTQT4j0z+zzqN1Ywu371rUJvdcdAzKdv1AzUem61fXGstp1/pkdq7W5uY/KufOaNNwUCcBQI3bJ2hWcN5cmG+TJ2DPGtwluW/eujOq46hSAT/AOPD86AOTX4b6MulLp63WqLEg+QLeMqL7+UMRH8UNLp+mnwaM/2ZYz6ePvXllaLFcRj1kjQYcerJg/7PU119FADIpY54UmhkWSKRQyOhyGB5BB7in1z/AIV/dpq9tF/x522pSx2w7BNqsyj0CyNIoHYDFdBQAUUUUAFFFFABRRRQAVnanpS35inhne1voM+RcxjJXOMqw6MhwMqfQEYIBGjRQBz/APb19pnya5pkyqP+XywjaeFh6lQDInvlSB/eNaOna3pWrqTp2pWl3t+8IJlcr9QDkH61frO1HQNH1dg2o6XZXbj7rzQK7L9CRkUAaNZI8NaStrZ2y2rLFZ2ZsYAszjZAfLymc5OfKTk5PHXk5q/8IXoq8QjUbZf7trqlzAv5JIBR/wAIbpf/AD9a5/4Pb3/49QBqWemWmngGBHG1Ni+ZK8mxfRdxO0cDgY6D0FULnxbokEzW8d8l3djrbWQNxKPqqZI+pwPeov8AhCfDrHNxpq3h/wCn6V7nP18xmzW3bWtvZwrDawRQRL0SJAqj8BQBibdZ135Zon0jTm+8vmA3co9MqSsQPsWbH9w1uW9vDaW0VvbxJFDEoSONBgKoGAAKkooAKKKKACiiigAooooAKKKKAM7U9KW/MU8M72t9BnyLmMZK5xlWHRkOBlT6AjBAIof29faZ8muaZMqj/l8sI2nhYepUAyJ75Ugf3jXQUUAUNO1vStXUnTtStLvb94QTK5X6gHIP1q/WdqOgaPq7BtR0uyu3H3XmgV2X6EjIqh/wheirxCNRtl/u2uqXMC/kkgFAGle6PY6jOs11CzyLBJbhlkZf3chRnX5SOpjT8sdCcus9MtNPAMCONqbF8yV5Ni+i7ido4HAx0HoKy/8AhDdL/wCfrXP/AAe3v/x6j/hCfDrHNxpq3h/6fpXuc/XzGbNAEtz4t0SCZreO+S7ux1trIG4lH1VMkfU4HvUW3Wdd+WaJ9I05vvL5gN3KPTKkrED7Fmx/cNbdta29nCsNrBFBEvRIkCqPwFS0AR29vDaW0VvbxJFDEoSONBgKoGAAKkoooAKKKKACiiigAooooAKy9T0uaa5j1HT5lg1GFCgLjMcyZz5cg64zyCOVPTIJB1KKAMBfFVrauIdchfSJycbrg5gc/wCzMPkOfQ7W/wBkVuo6SorxurowyGU5BFKyq6FHUMrDBBGQRWE/g3Qd7SW1m1hIxyX06Z7Uk+p8plz+OaAN6udsfBunaZZaba2E1zarp9hJYwtCUVikjRs7n5cbyYgSwxyzHqQQ7/hGbiP/AI9vE+uQDsPMhlx/39jYn8aP+Ed1Pv4y1wjuPKsh/K3oA0LDSUsPK/0mefyYvJh83b+7TjIG1RnO1euen1y/UdX07SIhLqN9b2qMcL5sgUsfQDqT7Csz/hE4pf8Aj81nW7oehv3hB/787P8AP41d07w7o2kzGax0y2hnYYacRgyt9XPzH8TQBS/tHUtc/d6Xbz2Nm3DahdR7HI/6ZRMM5/2nAA6gNWxY2NvptjDZ2qbIYlwoJyT6kk8kk5JJ5JJNWKKAOf8AD3/Ic8Wf9hWP/wBIrWugrn/D3/Ic8Wf9hWP/ANIrWqfxLn1ez+Hmr3mhSyQ6haJHcpIjAFVjkV3PPBGxWypzkZGDnFAHWUV5P4QvPF02v6V9puZ7zTbv7fdwpfX6K/lLcIiyYhgw3yTZVPMeJsqylAqV1kGtzf8ACzbzT/3jae9lHAsrSEJHeRlpWiVT1doZ43yOojPXa20A6S+v7PTLOS8v7uC0tY8b5p5BGi5IAyx4GSQPxqSCeG6t4ri3ljmglQPHJGwZXUjIII4II5zUd5bfaIg0awC6i3PbSzReYIpCpUNjIPRiDggkEjIzXI+HdVurDTdNso9PluS95ew3VyhUedNHNMJHAJAQyOrSbc4UMVXOOADtq5/w9/yHPFn/AGFY/wD0ita1tPSdLT/SS3mNJI+GbJVWcsqk+wIHHHHHFZPh7/kOeLP+wrH/AOkVrQBc1PS5prmPUdPmWDUYUKAuMxzJnPlyDrjPII5U9MgkGoviq1tXEOuQvpE5ON1wcwOf9mYfIc+h2t/sit+kZVdCjqGVhggjIIoARHSVFeN1dGGQynIIp1YL+DdB3tJbWbWEjHJfTpntST6nymXP45pv/CM3Ef8Ax7eJ9cgHYeZDLj/v7GxP40AWrjw/aS6lPqNvJLZXVxA0NxJa7UM+Sm1nO0lmUIVUn7od8deJrDSUsPK/0mefyYvJh83b+7TjIG1RnO1euen1zn/8I7qffxlrhHceVZD+VvR/wicUv/H5rOt3Q9DfvCD/AN+dn+fxoA09R1fTtIiEuo31vaoxwvmyBSx9AOpPsKzP7R1LXP3el289jZtw2oXUexyP+mUTDOf9pwAOoDVd07w7o2kzGax0y2hnYYacRgyt9XPzH8TWnQBXsbG302xhs7VNkMS4UE5J9SSeSSckk8kkmrFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQXl5bafayXV3MkMEYyzucAen49sd6nrnrZRq3iy/kuQGi0hkhtoj0EjxrI0uO5w6qD2w+OpoAX+0Ne1XnTLGLT7Y9LnUlYyN7rACCB/vsp/wBmj/hGJbnnU9f1e7/2Irj7Ig+nkBGx9WNdBRQBz/8AwhHhtuZdKinb+9cO0zfm5Jo/4QXwoPu+HNLQ9ylqilvqQOfxroKx9H1461K7Q6VfRWPzmG/lMPk3AVtoaMLIXKsPmVioBXBzyMgFf/hC9ET/AI9oruzPb7HfTwAfgjgfgRij+yNcsfm0/wAQPcqP+WGpwrIuPQPGEYfVt9bxkQSLGXUOwLBc8kDGTj2yPzFOoAxLbX5IrmOz1qybTrmRtscgfzLeZuwSTA5PZWCk9ga26iubaC8tpLa5hSaCVSrxuuVYehFZHhmeY299p80jzHTbtrRZXOWdNiOmT3IV1UnuVPegDVvLy20+1kuruZIYIxlnc4A9Px7Y71jf2hr2q86ZYxafbHpc6krGRvdYAQQP99lP+zSWyjVvFl/JcgNFpDJDbRHoJHjWRpcdzh1UHth8dTXQ0Ac//wAIxLc86nr+r3f+xFcfZEH08gI2Pqxo/wCEI8NtzLpUU7f3rh2mb83JNdBRQBz/APwgvhQfd8OaWh7lLVFLfUgc/jR/wheiJ/x7RXdme32O+ngA/BHA/AjFXLDX7HUtZ1DTLRpJJbBI2mk2/uyXaRdqt/EVaJw2OARjOQwGkZEEixl1DsCwXPJAxk49sj8xQBg/2Rrlj82n+IHuVH/LDU4VkXHoHjCMPq2+pbbX5IrmOz1qybTrmRtscgfzLeZuwSTA5PZWCk9ga26iubaC8tpLa5hSaCVSrxuuVYehFAEtFYfhmeY299p80jzHTbtrRZXOWdNiOmT3IV1UnuVPetygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKbJIkMTyyuqRoCzOxwFA6knsKdXOsi+IPEV5bXI36fpbIhgP3Zp2VZMuO4VWTAPGWJPIGAB3/CQ3Wo8aBpjXsR6XlxJ5Fuf91sFn+qqVP96j+y/EV3zeeIltR/c0yzRCPYtL5mfqAtdBRQBz//AAicT83Gs65M3c/2jJHn8IyoH4Cj/hDtOHKXuuI3r/bd236NKR+ldBWXp3iDT9Vvbi0s/tbvA8iPI1lMkW6N9jhZWQIxDAjAJ6H0NAGX4QtFsNQ8U2ySzyqmqph55Wkc5s7Y8s3J610F9ZRahZyWszzpG+MmCd4XGCDw6EMOnY89Olc34s8Jw6tG0+n6B4buNUmIWS81S0WQooGAR8hLkYAAJAHvjFZ/hv4f3nh6CZLTVbTT2uCGnk03TY45JCOmS+9eMnAVFUZ4FAHUJ4c0iFIktbGO0SG3mtoltCYBHHKytIF2EbSWRTuGCCMgjJqT+xNO/sf+yvs/+iddu9t+7dv8zfnd5m/59+d275s7uazJfBen3kLx6je6tfbwQfO1CVR9diFUz+FZXh7wl4Yura7tb3wzok15p9y1rNM2nQ5lwqurn5erI6E+5NAHWalpOm6zbrb6pp9pfQK4dY7qFZVDYIyAwIzgkZ9zViCCG1t4re3ijhgiQJHHGoVUUDAAA4AA4xXDQ+CvCuqeKLtP+Ea0eO00orF5cdjGolndA5L4XkKjLhemXJPQY3f+EE8H/wDQqaH/AOC6H/4mgDoK4vT9Cg1TxJ4qmlvNShxqcabLW+lgUj7HbHkIw5569elan/CCeD/+hU0P/wAF0P8A8TWrp2lado9sbbTLC1soCxcxW0KxqWPU4UAZ4H5UAZX/AAh2nDlL3XEb1/tu7b9GlI/Sj/hGJ4v+PPxJrdv6Bpo5x+Pmo5/WpNR1m6mubvTPD39m3eq2gja6hu7h41gWQMUJKI2SdpO3g4we4zzhi+JN0xF42nwJn7umTrHx/vSxSH8QAfpQBv7PFVhyJtO1aIfwMjWsuP8AeBdWPttUe4qvB4/0FppLW7uGs9Qi4eylG+X/AID5e4P/AMBJ98Vj/wDCPahLzqHhqPU/7y3+uyTqf+2bR7P0FbFpcatp8IhsvBsFtEOiQ3cSL+QFAFXTNKTxHf6zqV7JrsMD3irZJ9tu7IeSIIgSIg6YHmeZyVyfyrS/4Q3S/wDn61z/AMHt7/8AHqs6DrUmsLfpPYSWVzY3X2WaJ5Ffny0kBBHUFZFq3qmq2Oi2DX+pXMdraI6I80nCqXcIuT2G5hyeB1OBzQBl/wDCG6X/AM/Wuf8Ag9vf/j1H/CG6X/z9a5/4Pb3/AOPVJpfjHw5rdwtvpWsWl9Ozuvl2z+Yy7CQWYDlUyuA5wpyuCdy51EvreTUZrBZM3UMUc0ibT8qOXCnPTkxv+XuKAMf/AIQ3S/8An61z/wAHt7/8eo/4Q3S/+frXP/B7e/8Ax6rniTV28P8AhrUtYSzkvDZW7z+QjqhYKMnluAAOT1OAcAnAOpQBz/8Awhul/wDP1rn/AIPb3/49TPCsZtbzxFYi4upoLXUljh+03Mk7IptbdyN8jFsbnY9e9b8M8dwheJtyh2QnGOVYqR+YNYfh7/kOeLP+wrH/AOkVrQB0FFFFABRRRQAUUUUAFFFFABWJfWt1p2qPrGnwm4EqBLy1UgNIF+66Z43gEjBxuGOcqM7dFAFHTdXsNXjd7K4EhjO2SMgpJEfR0bDKfYgVerN1LQNL1aRJru0U3CDCXMbGOZB/syKQw/A1R/sLV7X/AJB/ia629o7+BLhR+I2OfxY0AdBWDD4Zi0ud28PtbaRBJA6SW0FqvlNKSu2XYCAGVQ68D5ty7shFFN2+MIuPN0O6x38qaDP4bnx+Zo83xg3H2TQ0/wBr7VM2Pw8sZ/OgC9YadcwSQSXl4ty8EBhjZYypIO3Jclm3E7F5479c8aVc/wDZfFs/+s1XSLVe4hsZJW/BmlA/8dNH/CKrdf8AIX1bUtSXvFJKIoj7FIggYezbqAJrvxBG1y+n6Sgv9RU7WVCfKgPrK4BC/wC7949h3FvSNMXSrHyTKZp5HaW4mIwZZWOWbHYZ6DsAB2qzaWdtYWyW1nbxW9vGMJFCgRVHsBwKmoAxL61utO1R9Y0+E3AlQJeWqkBpAv3XTPG8AkYONwxzlRm7pur2Grxu9lcCQxnbJGQUkiPo6NhlPsQKvVm6loGl6tIk13aKbhBhLmNjHMg/2ZFIYfgaANKq9/DcXGnXMNndfZLqSJ0huPLEnlOQQr7Tw2Dg4PXFY/8AYWr2v/IP8TXW3tHfwJcKPxGxz+LGjb4wi483Q7rHfypoM/hufH5mgCjo3hXV9JvLy4Gr6eDPZx2yiDTpFKMkkj+YS87l2JmkLFslmIJPXduWGnXMEkEl5eLcvBAYY2WMqSDtyXJZtxOxeeO/XPFHzfGDcfZNDT/a+1TNj8PLGfzo+y+LZ/8AWarpFqvcQ2MkrfgzSgf+OmgDoKxbvxBG1y+n6Sgv9RU7WVCfKgPrK4BC/wC7949h3EP/AAiq3X/IX1bUtSXvFJKIoj7FIggYezbq2rSztrC2S2s7eK3t4xhIoUCKo9gOBQBW0jTF0qx8kymaeR2luJiMGWVjlmx2Geg7AAdqv0UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWBdpLoesXGrRwyTWN2q/bEiXc8ToMCUKOWG3hgMn5VIB5rfooAhtLy2v7VLmzuIri3kGUlicMrD2Iqasa78M2U9095aS3Om3khy89jJ5Zc+roco592U1B9n8V2n+p1DTNRTstzA9u/wCLoWB/BBQB0Fc7ZaDdeHlW10B1/s0WxRLa+upZfJlUoI9jNuYJs3grnHyptC5cl39p+Jo+JfDds7ettqYZfzeND+lH9ta63CeFLlT6y3kAH6MT+lAFyxttQNxb3GomDzYLdoS0TlvNLFCWPyrt+50Gfvdsc6lc/wDbPFk/+q0bS7ZT/Fcag7sP+ArFj/x6j+xtbveNT8QMkZ6w6Zbi3B9i7F3/ABUqfpQBd1LW7bT5EtUBudQlGYbKEgyP7n+6o7scAfXAJoemyabZSG5dZLy5ma5uWT7pkbHC/wCyAAo74UZqbTdIsNIidLG3WPzDukckvJIfV3YlmPuSTV2gDAu0l0PWLjVo4ZJrG7VftiRLueJ0GBKFHLDbwwGT8qkA81s2l5bX9qlzZ3EVxbyDKSxOGVh7EVNWNd+GbKe6e8tJbnTbyQ5eexk8sufV0OUc+7KaANmq9/8AbP7Ouf7O8j7d5T/Z/tGfL8zB278c7c4zjnFY/wBn8V2n+p1DTNRTstzA9u/4uhYH8EFH9p+Jo+JfDds7ettqYZfzeND+lAGT4e0LxDpGoahctZ6Yn2izjjU/2hJMzTiaaV5H/cIPna4diFAAK4AAPy9FY22oG4t7jUTB5sFu0JaJy3mlihLH5V2/c6DP3u2Oaf8AbWutwnhS5U+st5AB+jE/pR9s8WT/AOq0bS7ZT/Fcag7sP+ArFj/x6gDoKzNS1u20+RLVAbnUJRmGyhIMj+5/uqO7HAH1wDS/sbW73jU/EDJGesOmW4twfYuxd/xUqfpWnpukWGkROljbrH5h3SOSXkkPq7sSzH3JJoA5/wAEW11a3XiiO9mWW6bVxJKyfdDPaW7FV/2RnAzzgCpfiLpEWvfD/WNNladfOiHlmCF5W8wMrJlUR2K7wu7Ck7c9OtNhbWNH1zXXi0Ge+gvrxLmKWG4hUYFvDGQQ7A53Rt+lWv7c1v8A6FK+/wDAu2/+OUAcfoHhefTtU0fVNWh1xLhbTUr28H2uV9kzXMMqptt2MbZBf5UUCTbkpkbV3I4NSTxLN4yMV39jkt/sZ09VYSm1Uh0naLqZVczHZ97y5BgCQGN9T+3Nb/6FK+/8C7b/AOOUf25rf/QpX3/gXbf/ABygCTxlbXd94K1uysLWS6u7qylt4oUZFJZ1KA5cgADdk89AcZOAXXenXmp3el3yXVzYiIFpLY7CyFkI7blLDO09RjOD6w/25rf/AEKV9/4F23/xyj+3Nb/6FK+/8C7b/wCOUAbVrbJaW4iQswyzMzdWZiWYntySTxxzxisXw9/yHPFn/YVj/wDSK1o/tzW/+hSvv/Au2/8AjlO8NW98lxrl7fWTWbX9+s8cLyI7BBbwxclSR1jbv0xQBvUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFY/ifULzTNFE9gYFupLu1tkaeMyIvmzxxFioZScBycZHSuHuPGPi6DWLzT4jY33k3aWsMllpiN5zMvZXvkb5XWZSQCo8mQlhscKAeoUVh+Hb/UrqXWLTVJbSafT70W6y2sDQq6mCGXJVncg5lI69hVi9160sdb07SZYrs3F+5WJ1t38oYSR/mkxsziNvlBLcg4xyADUooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivP8AxH4p8Qac2tXFlc6UlvYahDZxW01ozyyhooZZH3meNflSSRzkABYySwALAA9Aorzuz8T+K5Inu7hbSK3g1O1sZUl00J5pknSJxHJHeSjKb8E4IDAr1DAdxqmpQ6TYNdzLI4DpGkcYBaSR3CIgyQMszKuSQBnJIGTQBcorP0zVk1LzYntp7O8hwZrS52+ZGGztb5WZWVsHDKSMhhncrAaFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHL/ABBtvtnhM2u2BvO1CwjxcRebGc3cI+dMjcvPK5GRxkVlyaQtr4g0nSpry7+1yW7m3uLZGt1tkQD5bdYsokSN5eY51IfzIgXkMQSuw1TSrHWrBrDUraO6tHdHeGTlWKOHXI7jco4PB6HI4rL/AOEE8H/9Cpof/guh/wDiaAKfgm1u7K48SW9/qEmoXaanGJbp4kjMrfYrbJ2oAFHYD0AySckyeKb+ztPEHg+K5u4IZJdVfy0kkCl/9EnTgHr8zov1dR1IrY0nQ9L0GKeLSbCCyhnl86SKBNib9qrkKOF4RegHr1JNaFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFef2+hy3fizxfqMUnl7LtImFjAiXtwotLZjCLh2+WNvRdjBsMJFr0CsO58G+Gb6/ub+90DTbu7uXDyzXVssrEhFQYLA4G1RwMDqepJIBxb2Lz+GNE1bT9Xni0mTULFjYRxMIJib6BY5IxOvmQR7RkRKdgyu0kAl/QNb1mz8P6PPqd++y3h2gnIGWZgqjLEKMswGWIUZySACRnjwL4TSWGWLw3pUE0MqTRywWiROjowZSGUAjkDvz0OQSK6CgDhbPWEvrfWL/Q9R0/VtfMEP2n7DN5sVtDmTy44yBhyp8084ZixJABSMdZZwXP2ye8ulijeSNIhHFIXAClzncVXrv6Y7deeL1FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFcZY+HtH1rxH4pn1LTre7lj1KONHmTcVX7HbHA9ssT+JoA7Oiuf/wCEG8Lf9AGx/wC/Qo/4Qbwt/wBAGx/79CgDoKK5/wD4Qbwt/wBAGx/79Cj/AIQbwt/0AbH/AL9CgDoKK5//AIQbwt/0AbH/AL9Cj/hBvC3/AEAbH/v0KAOgormfCVpb6ff+J7K0iWG2h1RRHEnCoDaWzEAduST9Sa6agAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKRmCqWYgKBkk9qwpPGWgLI0dvffbpVOGj0+F7tlPoREGx+NAG9XP+Hv+Q54s/wCwrH/6RWtH/CTyvzb+G9cmXsfIjjz+EjqR+Iqv4QuJbvUPFM81lPZSNqqZgnKF0xZ2w5KMy89eCevrxQBqeIdfsfC+iTaxqbSLZwPGsrou4oHdU3Y6kAsCcZOAcAnis/RvG2ma7exWdlb6kJ3ecFbiykgCpC5R3y4AI3bF2qSwLruVcNtk8caMniDwXqmlSWk919pi2JHAV3h8gq43OinawDYLDO3HOcHl9F8BJpF/pOo3vh+xvL62tL6e6liZZ3ku2nikiKyTBXZsCTaznK9C5+8wB3kepQy6zc6Wqyefb28Nw7EDaVkaRVA5znMTZ47jr2p+K9TvNF8JatqthDBNdWdpJcIk7FUO1SxzgZOACccZ6ZXORjpomorrjeMTb79VaI2w08uuVszsYQhwdvnB1aQEnbmRoyxXbIux4r0+81fwlq2mWAgN1e2klshnkKIu9SpYkKx4BJxjnGOM5ABrNIiMis6qXO1QTjccE4HrwCfwqO2uUuomkQMAJHj+b1Rip/UGs250Uanc6df3jSQXVuh8yK3uHKZZcEKw2ng/xYBIGCPTUggjtoViiXai++SSeSSTySTySeSTQBh+Hv8AkOeLP+wrH/6RWtdBXF6f4g0/SvEniq2uGuJLhtTjcQ21rLO+02dsAdsasQMg8n0rU/4SeV+bfw3rky9j5EcefwkdSPxFAHQUVz//AAkeojl/B+uIvrvtG/RZyf0o/wCEsgi/4/NI1u19S2nyTAfUxBxQB0FFZmneIdH1eRorDU7WeZRloVkHmL/vJ94fiK06ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArL1PVJYLmPT9PhW41GZC6q5xHCgOPMkPXGeAByx4GACRqVz+lfufF+vxz8TzeRNAT/FAIwuB64kEmfTePUZAFXwrb3jCXXZ31ebOdk4xbr/uwg7fxbc3+1W7HGkMaxxoqIowqqMAD6U6igArjr6fVvC13ruqGLRTpl3cpdefe6m9sY8QRRFSBC4PMWRg85xiuxrkYy+ot4kGr2FtrLaXqWLGD7KnyIbaF1C7s/MPMbLdTk4AGFABU8P8AxIt9Ujne/gtoCrAQx6fPJfyyDuWjSIMnbAYbvUDvs/8ACRX9xxYeGdUlHaS58u3T8Q7b/wDxyr2j3j3lnbyJpzWlu0KuuXTHIBAULnjrydp6ccnGlQBzVzqXjGG2kmj8N6TOVUssSay4dvYZt8Z/HHvTLHWfFGo2UV5a6NobwyruU/2xMD7gg2uQQeCDyCCK6iuf8K/Our3MX/HncalLJbehXaqsw9QZFkYHuDQBSn1/xVDqlvpy+H9HluJlMhEesSYiQcb3JthgE8DqSc4HBIu/bPGH/QC0P/wczf8AyLRpX7nxfr8c/E83kTQE/wAUAjC4HriQSZ9N49RnoKAMTw7Yajay6vd6nHaxT6hei4EVtO0qoogiiA3MiEn90T93vW3RRQAUVyYvNX0jXGtnvJ9aL6fLdzwrDGggkDxrGsYUAqj7psBy7ERcElWzuaXqM+pW8Nw1jJbxSRLJukkU5JAI27Scjrydp6ccnAA/UdH03V41j1Gxt7lVOVMsYJQ+qnqD7isz+z9T0P8AeabcT6hZL96wupN8gH/TKVjkn/ZckHpuWugooAr2N7b6jZRXlrJvhlXcpwQfcEHkEHgg8ggirFc/4V+ddXuYv+PO41KWS29Cu1VZh6gyLIwPcGugoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACo7i4htbeS4uJUhhjUs8kjBVUDqST0FSVzyIuueJ71Lkb7PSXjjjhP3WnZFkMjDvtVk2+h3HrjAAv9tapqf8AyBNLAgPS81EtCh90jxvb8dgPYmj+wtXuudQ8TXQ9Y9Pgjt0/Ng7/APj9dBRQBz//AAhulvzPPqtw396XVbk/kN+B+AFH/CFaEPuwXSnuUvp1LfUh+fxroKp2Gq2OpveJY3Mc5srg2txs5CShVYpnoSAwzjocg8ggAGX/AMIlbxf8eera3a+m3UZJQPoJS4/DGKPsfiew5ttUtdUQf8sr+HyZG/7axDaP+/ZroKKAMey8QJLdpY6hazadfvwkU+Ckvf8AdyD5X4ycZDY5Kitiq97Y22o2j2t3CssL9VPYjkEHqCDyCOQRkVneHLuea3vbK6kM0+nXTWrTN1kG1XRj/tbHXPvnp0oA1bi4htbeS4uJUhhjUs8kjBVUDqST0FYf9tapqf8AyBNLAgPS81EtCh90jxvb8dgPYmkRF1zxPepcjfZ6S8cccJ+607IshkYd9qsm30O49cY6GgDn/wCwtXuudQ8TXQ9Y9Pgjt0/Ng7/+P0f8Ibpb8zz6rcN/el1W5P5DfgfgBXQUUAc//wAIVoQ+7BdKe5S+nUt9SH5/Gj/hEreL/jz1bW7X026jJKB9BKXH4YxVzTfEOmatcNBZzyM4QyIXgkjWZAQC8TMoEqcr8yFh8y8/MM6lAHP/AGPxPYc22qWuqIP+WV/D5Mjf9tYhtH/fs1YsvECS3aWOoWs2nX78JFPgpL3/AHcg+V+MnGQ2OSorYqve2NtqNo9rdwrLC/VT2I5BB6gg8gjkEZFAFiisbw5dzzW97ZXUhmn066a1aZusg2q6Mf8Aa2OuffPTpWzQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFUNT0qLUljfzJLe6gJaC5iOHiJ6+xBwMqcg45HAq5JLHCu6WRUXpljgVEL60JwLqAn/roKAMf+19X0v5NX0yS6iH/L7pkZdSPVocmRT7Lv+varNl4p0LUJTDbataNOOTA0gSVfqjYYfiK16rXunWOpRCK+s7e6jByEniVx+RFAFmo44IYXmeKKNHmffKyqAXbaFy3qdqqMnsAO1Yf/AAg/hlf9Vo1tbr/dtgYV/JCBR/whWhH79vcyD0lvp3H5FyKANyaeG2jMk8scUY6s7BQPxNYjeMtGkYx6fO+qzA48vTUNxz6Fl+Rf+BMKfD4N8MwSCVNB05pR0lkt1d/++mBP61tqqooVVCqBgADAFAGB9m1jXeNRX+zNOb71pFJuuJR6PIpwg9VQkn+9jIO7FFHBCkMMaxxRqFREGAoHAAHYU+igChqelRaksb+ZJb3UBLQXMRw8RPX2IOBlTkHHI4FZ39r6vpfyavpkl1EP+X3TIy6kerQ5Min2Xf8AXtXQUUAZFl4p0LUJTDbataNOOTA0gSVfqjYYfiK16rXunWOpRCK+s7e6jByEniVx+RFZH/CD+GV/1WjW1uv922BhX8kIFAG4IIVuHuFijE7oqPIFG5lUkqCepALMQO24+tE08NtGZJ5Y4ox1Z2Cgfiaw/wDhCtCP37e5kHpLfTuPyLkVJD4N8MwSCVNB05pR0lkt1d/++mBP60AMbxlo0jGPT531WYHHl6ahuOfQsvyL/wACYUn2bWNd41Ff7M05vvWkUm64lHo8inCD1VCSf72Mg76qqKFVQqgYAAwBTZJY4V3SyKi9MscCgAiijghSGGNY4o1CoiDAUDgADsKfVcX1oTgXUBP/AF0FWKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArCvYbjSNWm1i1ge4trhFW9giGZAV4WVB/EQOGXqQBjkYbdooAq2Go2WqWoubG5iuISSN0bZwR1B9CO4PIq1WTf+G9Nv7o3hjktr0gD7XaStDKcdNxUjcB6Nke1Vf7O8S2n/AB6a9b3iD+HUbMFz/wADiKAf98mgDoKxbXTr+wn8QXMH2Z5b+8W4tw7MFUC3hi+fA9Y2OB1GORniH7X4ui4fR9HnA/ij1KRCf+AmEgf99Uf2j4pPTw7YZ99VOP8A0TQBcsbbUDcW9xqJg82C3aEtE5bzSxQlj8q7fudBn73bHOpXP7/GE/HkaHZe/nTXWPw2xUf8I9fXn/IW8QXs6HrBZgWkZ/FP3n/j9AFrUNegtbk2Fov23VCMraRNyoPRpD0jX3PXsCcCpdF0xtMsWSaQS3U8jT3MoGA8jdcDso4AHoB1qfT9NstKthbWFrFbw5LFY1xknqT6k+p5q1QBhXsNxpGrTaxawPcW1wirewRDMgK8LKg/iIHDL1IAxyMNp2Go2WqWoubG5iuISSN0bZwR1B9CO4PIq1WTf+G9Nv7o3hjktr0gD7XaStDKcdNxUjcB6Nke1AGtRXP/ANneJbT/AI9Net7xB/DqNmC5/wCBxFAP++TR9r8XRcPo+jzgfxR6lIhP/ATCQP8AvqgCa806/k8QHVIPsxNvYNbWauzDLyurSmTAPAEUO3H+2D1BE1jbagbi3uNRMHmwW7QlonLeaWKEsflXb9zoM/e7Y5p/2j4pPTw7YZ99VOP/AETRv8YT8eRodl7+dNdY/DbFQB0FZOoa9Ba3JsLRftuqEZW0iblQejSHpGvuevYE4FVf+Eevrz/kLeIL2dD1gswLSM/in7z/AMfrW0/TbLSrYW1haxW8OSxWNcZJ6k+pPqeaAINF0xtMsWSaQS3U8jT3MoGA8jdcDso4AHoB1rRoooAKKKKACiiigAooooAKKKKACiiigAqtf39rptq1zdyiOIEDoSWJ6KoHLMTwAOTVmufsgNS8XanNcDcNLZLe1Q9ELxq7yAep3hc9gpA6nIAed4i1bm2ih0a1PR7pPOuGHqEB2p7ZLH1UUf8ACJW0/Opalq2oN3868aND9Ui2IfxFdBRQBhR+CvC0bbx4d0tpOhkktUdz9WYEn86lPhLw2Rg+HtJI/wCvKP8AwrYrPtdWS+1Ge2traeSCHcr3o2+T5qnDRA7tzMO5ClQQyltylQAZ/wDwg/hpP+PfSILM+tiWtiPxjK0f8I/qNl82leIL1MdIb8C7iP1LYk/8f/Ot4yIJFjLqHYFgueSBjJx7ZH5inUAYUWuXVlMlvr1mtqXYIl5C++2kY9AScNGT6MMZOAzGt2mTQxXELwzRpJFIpV0dcqwPUEHqKxfC8sgg1DT3dpE028a1ikc5LR7EdQT3Kh9uep285OTQBu0UUUAFFFFABRRRQAUUUUAVr+/tdNtWubuURxAgdCSxPRVA5ZieAByayPO8RatzbRQ6Nano90nnXDD1CA7U9slj6qKLIDUvF2pzXA3DS2S3tUPRC8au8gHqd4XPYKQOpz0FAHP/APCJW0/Opalq2oN3868aND9Ui2IfxFPj8FeFo23jw7pbSdDJJao7n6swJP51u0UAY58JeGyMHw9pJH/XlH/hVf8A4Qfw0n/HvpEFmfWxLWxH4xlasaf4gS+1EWUmn31lJLE09sbtFX7REpUMwUMWTHmR/LIEb5xxkNjWMiCRYy6h2BYLnkgYyce2R+YoAwf+Ef1Gy+bSvEF6mOkN+BdxH6lsSf8Aj/50+LXLqymS316zW1LsES8hffbSMegJOGjJ9GGMnAZjW7TJoYriF4Zo0kikUq6OuVYHqCD1FAD6KwvC8sgg1DT3dpE028a1ikc5LR7EdQT3Kh9uep285OTW7QAUUUUAFFFFABRRRQAUUViX13dahqj6Pp8xtxFGHvLpQC0Qb7qJnjeQCcnO0AcHIwAWdS1/S9IkSK8vEWeQZjt0BkmkH+zGoLN+Aqj/AG7q11/yDvDV0V7SX8yWyH8BvcfigrS03R7DSI3WztwjSHMsrMXklPq7sSzH3JNXqAOf3+MJOfJ0O3z/AA+dNNj8dqZ/IUeX4wXn7Vocn+z9mmT9fMP8q6CigDn/ALV4tg/1mlaRdL3MN9JE34K0RH/jwo/4SqO1/wCQvpWo6YB1lmiEsQ9zJEWCj3bbXQUUAQ2t3bX1slzaXEVxBIMpLE4dWHsRwamrFuvD6JcyX+kOLDUGO5ygPlTn0ljHDf73DDsext6Rqa6rY+cYjDMjtFPCTkxSKcMue4z0PcEHvQBkLf8AiHUdY1i306XS4Lawukth9ogkkdyYIpScq6j/AJa4xjtU3k+MP+f7Q/8AwDm/+O0eHv8AkOeLP+wrH/6RWtdBQBz/AJPjD/n+0P8A8A5v/jtHk+MP+f7Q/wDwDm/+O10FFAHP+T4w/wCf7Q//AADm/wDjtHk+MP8An+0P/wAA5v8A47WpqWqWmk26zXbyAO4SNIonlkkbBOERAWY4BJABwFJ6AmpLG+t9Rs47q1k8yF8gEqVIIJDKynBVgQQVIBBBBAIoAx/J8Yf8/wBof/gHN/8AHam8PajqF7Jq1rqX2Y3Gn3gt99sjKjgwxSg4Ykg/vcde1bVc/wCHv+Q54s/7Csf/AKRWtAHQVm6lr+l6RIkV5eIs8gzHboDJNIP9mNQWb8BVa+u7rUNUfR9PmNuIow95dKAWiDfdRM8byATk52gDg5GLum6PYaRG62duEaQ5llZi8kp9XdiWY+5JoAzf7d1a6/5B3hq6K9pL+ZLZD+A3uPxQUb/GEnPk6Hb5/h86abH47Uz+QroKKAOf8vxgvP2rQ5P9n7NMn6+Yf5UfavFsH+s0rSLpe5hvpIm/BWiI/wDHhXQUUAc//wAJVHa/8hfStR0wDrLNEJYh7mSIsFHu22tq1u7a+tkubS4iuIJBlJYnDqw9iODU1Yt14fRLmS/0hxYagx3OUB8qc+ksY4b/AHuGHY9iAbVFUNI1NdVsfOMRhmR2inhJyYpFOGXPcZ6HuCD3q/QAUUUUAFFFFABRRRQAVi6hZXdpqR1jTI1mlaMR3VqW2/aFXJUqTwHXJAzwQcEjAI2qKAM3Tdd0/VHeGCYpdRj95azKY5o/95Gwceh6HsTWlVHUtG03WERdQsYLjYcxs6fNGfVW6qfcEVm/8I3dW3/IM8RapbL2indbpPzlBf8A8eoA6CuR0TwOPDtrYppd8sNxBpxs7icwljdP+62SvlsnYEcIpJCiTAwowb32TxbFwmr6POvYy6dIrD6lZsH8hR5PjD/n+0P/AMA5v/jtAF6w065gkgkvLxbl4IDDGyxlSQduS5LNuJ2Lzx36540iQASTgDqTXP8A9m+J5/8Aj48RWsIPay04KR+Mjvn64/ClHhCwnIbVbi91c/3b+fdGfrEoWM/980AOl8Qi9le00BFvrgHa9wM/ZoD33SDhiP7iknPB2jkaGlabHpVgtujtK5ZpJpn+9LIxyzn6k9Og4A4Aq1FFHBEsUMaxxoMKiDAUegAp9ABRRRQAUUUUAFFFFABRRRQBi6hZXdpqR1jTI1mlaMR3VqW2/aFXJUqTwHXJAzwQcEjAIsabrun6o7wwTFLqMfvLWZTHNH/vI2Dj0PQ9ia0qo6lo2m6wiLqFjBcbDmNnT5oz6q3VT7gigC9RXP8A/CN3Vt/yDPEWqWy9op3W6T85QX/8eo+yeLYuE1fR517GXTpFYfUrNg/kKAJptClXW7rVdPvmtp7u28icSK0wYqR5TKGbCbAZflUAMZSTkjmxYadcwSQSXl4ty8EBhjZYypIO3Jclm3E7F5479c8UfJ8Yf8/2h/8AgHN/8do/s3xPP/x8eIrWEHtZacFI/GR3z9cfhQB0BIAJJwB1JrCl8Qi9le00BFvrgHa9wM/ZoD33SDhiP7iknPB2jkNHhCwnIbVbi91c/wB2/n3Rn6xKFjP/AHzW5FFHBEsUMaxxoMKiDAUegAoAq6VpselWC26O0rlmkmmf70sjHLOfqT06DgDgCrtFFABRRRQAUUUUAFFFFABXPWrDSfFmoR3JCxas8c1tK3QyLGsbRZ7HCKwHfLY6GuhqC8s7bULWS1u4VmhkGGRh+R9iDyD1BoAnorn/ALDr+lcabeRalajpb6i7LKvsJ1BJH+8pPq1H/CTyW3GpaBrFp/tx2/2pT9PILt+aigDoK838MatcQvZa9rltaT3mr6PJqIntomaa3iUw/uQx6xnzlYKAoTadxkYtIeo/4Tfw2vEuqxW7f3blWhb8nANH/CdeEj9zxNpEh9Ir2Nz+SkmgC1pupy6pJaTxRSx27WxeZXjZQHbYVAZgN3G/lePzFa1c/wD8Jpoj/wDHtLd3h7fY7GecH8UQj8ScUf2xrd78uneHpIAf+W+pzJEv1CIXc/QhfqKANu5uYLO2kubmZIYIlLPI7YVR6k1keGYJhBf6hNG8J1K8a6SJxhkTYiJkdiVQMR2LHPOaW20GWa5jvNavTqFxG2+OJU8u3ibsVjyckf3mLEdsVt0Ac/4e/wCQ54s/7Csf/pFa1T+Jem6lqvw81e30dpF1BEjuIDEWD7opFlwm0E7/AJMLjvjp1qCw8SaFo3iTxVb6rrWnWMz6lHIsd1dJEzL9jthuAYgkZBGfY1txX/hvxbaXFnDd6TrVsNvnwJJHcoOcruUEjquRnuPagDzPwHp+oPrmh31tqlpJY3qalfxQySXF6qILpBlXeYASlJmG/YjDc4dWYtjsINSmT4jXl9tjXQ57ePSmumB5vIpGZVVgcbD9okjyf+WsZThtofrLmws7zd9qtIJ90TwHzYw2Y3xvTn+Ftq5HQ4GelYc3ibwTbWr6RPrfh+K3SP7M9m93CqKmNvllCcAY4246cUAaGv8AiHTfDOltqGp3McMW8RxhnVTLI33UUsQMn1JAABJIAJHO+HLu/OkaO+kPZ6ha3M91Le3MMreU1w0krShGKkiISl9rYOQFGectrf8ACd+D/wDoa9D/APBjD/8AFUf8J34P/wChr0P/AMGMP/xVAGtp9s9raeXIVLtJJK23kAu5cgHvjdjPGcdB0rJ8Pf8AIc8Wf9hWP/0itaP+E78H/wDQ16H/AODGH/4qoPCN9aalf+KLywuoLq1l1VPLngkDo+LO2Bww4OCCPqDQBNasNJ8WahHckLFqzxzW0rdDIsaxtFnscIrAd8tjoa6GoLyzttQtZLW7hWaGQYZGH5H2IPIPUGsb7Dr+lcabeRalajpb6i7LKvsJ1BJH+8pPq1AHQUVz/wDwk8ltxqWgaxaf7cdv9qU/TyC7fmoo/wCE38NrxLqsVu3925VoW/JwDQBjxW9l4V8YXEi2Edravpks0Zs8vLeFHi82S6JGXkBkQIxLHDTMzDdx0Wm6nLqklpPFFLHbtbF5leNlAdthUBmA3cb+V4/MVV/4TrwkfueJtIkPpFexufyUk0f8Jpoj/wDHtLd3h7fY7GecH8UQj8ScUAdBUVzcwWdtJc3MyQwRKWeR2wqj1JrE/tjW735dO8PSQA/8t9TmSJfqEQu5+hC/UVLbaDLNcx3mtXp1C4jbfHEqeXbxN2Kx5OSP7zFiO2KAE8MwTCC/1CaN4TqV410kTjDImxETI7EqgYjsWOec1uUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVgXby63rE+kxTSQWNoqm9eJtryu4ysSsOVG3liMH5lAPWgCa88TWNvdPZ2yXGo3qHD29lF5hQ+jtwiH/fZag+0+K7z/U6fpunJ2a6naeT8UQBR+DmtmzsrXT7VLWytore3jGEiiQKq/QCp6AOf/szxNJzL4ktUb0t9MCr+TyOf1o/sbX15XxVMSeoexhIH0wB+pNdBRQBz/2PxZB/qtZ0u5Ufw3GnujH/AIEsuP8Ax2j+2tZsv+Qp4fdox1m0ycXIHuUIR/wVW/HrXQUUAUtN1aw1eFpLG5WUIdsiYKvGfR1OGU+xANXazNS0O21CVbtCbXUYxiK9hAEiD+6f7y+qnIP1waND1KTUrJ/tKLHeW0rW90ifdEi4yVzztIIYZ5wwzQBp1jXniaxt7p7O2S41G9Q4e3sovMKH0duEQ/77LUN28ut6xPpMU0kFjaKpvXiba8ruMrErDlRt5YjB+ZQD1rYs7K10+1S1sraK3t4xhIokCqv0AoAxvtPiu8/1On6bpydmup2nk/FEAUfg5o/szxNJzL4ktUb0t9MCr+TyOf1roKKAOf8A7G19eV8VTEnqHsYSB9MAfqTR9j8WQf6rWdLuVH8Nxp7ox/4EsuP/AB2ugooA5/8AtrWbL/kKeH3aMdZtMnFyB7lCEf8ABVb8etaem6tYavC0ljcrKEO2RMFXjPo6nDKfYgGrtZGsaVYzg6jJMtheW6HZqClVaNfRieGT1VuPxwaANeiuD8NW114sGqanqV3qcC/bBFbfZL2WGCSNIYgXiAIyjSeYQff2rc/4RG1/6Cmuf+DWf/4qgDoKK5//AIRG1/6Cmuf+DWf/AOKo/wCERtf+gprn/g1n/wDiqAOgorn/APhEbX/oKa5/4NZ//iqP+ERtf+gprn/g1n/+KoA6Ciuf/wCERtf+gprn/g1n/wDiqb4WWSC78Q2LXVzcRWmpLHCbmZpXVTawORuYkkbnY/jQB0VFFFABRRRQAUUUUAFFFFABRRWfqeqrp5igihe6vp8+RbR8F8YyxPRVGRlj0yBySAQDQrP1HXdI0jH9papZWZP3RPOqFvoCck/Ss/8AsK/1P59b1SbYf+XLT5GgiA9C4xI/5qD/AHa0NO0LSdIz/Z2m2lqzfeaGFVZvqQMk/WgDP/4TXQ2/1Mt5cjsbXT7icH6FEOaP+Ey0vvba2B6nQr0Afj5VdBRQBzsvjrw7DE7yX5jdQSsUsLxSSHsqq4BYnoAOpI9apabqgs3uf9Hk1HxFduJLq2tSGW24+SJ5D8qBF7E5JLMFO6trXNAtfEENtBey3KwQTLOY4JjGJGX7u4j5sA88EcgVVPgvw+mGs9Oj06YDAn08m2k/Fkxu+hyKAE/sO91b5/EF2GhP/MOtGKwfR24aX8dqnutbsMMVtCkMESRRINqIihVUegA6Vhb9Z0L5riV9X05fvSCMC6iHqVUBZQP9kK3sxrct7iG6tori3kWWGVQ8ciHIZSMgg+lAElFZ+p6qunmKCKF7q+nz5FtHwXxjLE9FUZGWPTIHJIBz/wCwr/U/n1vVJth/5ctPkaCID0LjEj/moP8AdoA0NR13SNIx/aWqWVmT90Tzqhb6AnJP0rP/AOE10Nv9TLeXI7G10+4nB+hRDmtDTtC0nSM/2dptpas33mhhVWb6kDJP1rQoA5//AITLS+9trYHqdCvQB+PlUo8b+GwQJ9WhtCf+f1Wt/wD0YFrfoIBBBGQeoNAEcFxBdQrNbzRzRN9142DKfoRUlYk/hHRJZmuIbJbK6bk3Nixt5Cfdkxu+hyKi36zoXzXEr6vpy/ekEYF1EPUqoCygf7IVvZjQB0FFR29xDdW0VxbyLLDKoeORDkMpGQQfSsOXxHdtqd/Z2Gg3l6LGVYJZUmhRd5jSTADuCflkXnHrQB0FFc//AG5rf/QpX3/gXbf/AByj+3Nb/wChSvv/AALtv/jlAHQUVz/9ua3/ANClff8AgXbf/HKP7c1v/oUr7/wLtv8A45QB0FFc/wD25rf/AEKV9/4F23/xyj+3Nb/6FK+/8C7b/wCOUAdBRWXousnVxepJYzWVxZXH2eaGZkYhjGkgIKkgjbIvf1rUoAKKKKACiiigAooooAK50uugeIry4uTs0/VWjfzz92KdVWPDnsGVUwTxlSOpXPRU2WKOaJ4pUWSNwVZGGQwPUEdxQA6iuf8A+Efu9O50DVGtIh0srpPPtx7KMh0+gbaP7tH9reILTi98OfaQP+WmmXaP+JWXyyPoC340AdBXE6Do48I3kxvNMtr+/ngluH1fT9NMc07GRTIkvLHczuHXDbSAw2oIxnW/4S23j/4+dJ1yA9x/Zk0uP+/SsD+FH/CZaZ2tNcJ7D+wr0fzioAuWN/cX9xbuIJ4Ivs7G4jliZNshKbQCwG7Hz8jj17VqVz//AAlEsvFn4d1u4PvbpAP/ACM6f5/CjzPFV/wlvp2kxH+OSRrqXH+4Aqg++5vpQBrX+oWumWjXN3LsjBCgAEs7HoqqOWY9gOTVHw7ZXFvbXd3dx+VdajctdyxZyY8qqKhI4JCIgOOMg4p1h4ft7S6F9czT6hqABAurpgWQHqEUAKg/3QM981rUAc6XXQPEV5cXJ2afqrRv55+7FOqrHhz2DKqYJ4ypHUrnoqbLFHNE8UqLJG4KsjDIYHqCO4rB/wCEfu9O50DVGtIh0srpPPtx7KMh0+gbaP7tAHQVXv7r7Dp1zefZ57jyInl8m3TfJJtBO1F7scYA7msf+1vEFpxe+HPtIH/LTTLtH/ErL5ZH0Bb8aP8AhLbeP/j50nXID3H9mTS4/wC/SsD+FAHO+F9QnTxLrmo3kGrzS3NhbyEtp10ib1muD5MXmRqDsSWFRgLu5cgEvjrrG/uL+4t3EE8EX2djcRyxMm2QlNoBYDdj5+Rx69qp/wDCZaZ2tNcJ7D+wr0fzio/4SiWXiz8O63cH3t0gH/kZ0/z+FAFvX59bg0/Og2VrdXZbGLmYoqD1wB8x9sr9RXH3DX2noup+JdCuNTlRh5fmXkTKrn7oigGF3Z6YDP7mul8zxVf8Jb6dpMR/jkka6lx/uAKoPvub6VasPD9vaXQvrmafUNQAIF1dMCyA9QigBUH+6BnvmgA0LWzrMd4JLC4sbiznEE0E7IWVjGkg5UkfdkXv1zVrVNVsdFsGv9SuY7W0R0R5pOFUu4RcnsNzDk8DqcDmsvw9/wAhzxZ/2FY//SK1qv8AEXSIte+H+sabK06+dEPLMELyt5gZWTKojsV3hd2FJ256daALml+MfDmt3C2+laxaX07O6+XbP5jLsJBZgOVTK4DnCnK4J3LnUS+t5NRmsFkzdQxRzSJtPyo5cKc9OTG/5e4rzfQPC8+napo+qatDriXC2mpXt4Ptcr7JmuYZVTbbsY2yC/yooEm3JTI2ruRwakniWbxkYrv7HJb/AGM6eqsJTaqQ6TtF1MquZjs+95cgwBIDG4B1GpT30Fuv9nWUd3cO4ULLP5MaDBJZ2wxA4wNqsckcAZYR6Lqf9r6YLow+TIsstvLGG3BZIpGjfa2BldyNgkAkYJAPAj1+91Ox0tpNH0yTULx3CLGrRgRg9ZGDugYKOdoYFjgZUEsMXSdCv30/RW3Xml/YzKslvNLFLK+S4EzsoKNK+d7deZG5zkkA6qGeO4QvE25Q7ITjHKsVI/MGsPw9/wAhzxZ/2FY//SK1ratbZLS3ESFmGWZmbqzMSzE9uSSeOOeMVi+Hv+Q54s/7Csf/AKRWtAHQUUUUAFFFFABRRRQAUUUUAFc/pPz+L/EDT/69Ps6Q57W5jyMfWTzf++a6CszU9Ke7mivbOf7LqMClY5tu5WU4JR1/iUkDuCOoIoA06K5//hJ/7P8Ak1+xm01h1uFBmtT7+ao+Uf8AXQJWzaXlrfwCezuYbiFukkMgdT+IoAnrl/CmtanrktxPeTQQRjLLpsmmzW11ArMfKMhkf5vlBBKptLBgrEKc9RVG90ex1GdZrqFnkWCS3DLIy/u5CjOvykdTGn5Y6E5AJhewvcQQo2/z4mmR1IKlVKjr77xirFU7LS7Swx9nSQbU2L5krybF9F3E7RwOBjoPQVBqPiHSNKkEV5fwpO33bdTvlf8A3Y1yzfgDQBp1z/hX5RrMcX/HnHqcy22OgXClwPYSmUfhR9p1fXf3dtbzaVYN965nwtxIPSOPnZn+8+GH93uNq0tILC0itLWIRQRKERB2AoAxdJ+fxf4gaf8A16fZ0hz2tzHkY+snm/8AfNdBWZqelPdzRXtnP9l1GBSsc23crKcEo6/xKSB3BHUEVS/4Sf8As/5NfsZtNYdbhQZrU+/mqPlH/XQJQB0FFQWl5a38Ans7mG4hbpJDIHU/iKS/sbfU9OubC8j8y1uonhmTcRuRgQwyORkE9KAMPQPEs2u69qdutvHHp8NvBNZy5JedXknQyHtsbyQyYzlSGz821dwXsL3EEKNv8+JpkdSCpVSo6++8YrJtvB2j2s9zMg1CSS6gFvM0+p3M2+MEsF+eQ9CW/wC+mHRjnSstLtLDH2dJBtTYvmSvJsX0XcTtHA4GOg9BQBNdXdtY27XF3cRW8K/ekmcIo+pPFYv/AAl1pc8aRZ32rHs9pDiI/wDbVysZ/BifajxHceFZFjtPECaddsG3RWlxCtxIWx1SLBYnHoKwB4P0nWzss/COnaNYn7129lFFcyL6IgX5AfV+R/c6EAF/SdL8VRR3USz6dpdnLcvPFGqtcyxK+CVB+VF+bcejDnFb2j6OmkJdH7VcXc93N59xPcbd0j7FTOFVVA2oowAOlZ8fgPwrFGqLoVnhQACUyfzPJPvTPCdtFY33iWytwy21vqirFGXLBAbS3YgZJ43Mx+pNAHS0Vy/xE1jVPD/gTUtX0ZPMvrPypVUxeYCglTzNw/u7N2SMYGTkYyOX8K+LvFWoa/ZWl/bz3VjPLfMk0FlFalliuBDl1kmLiNRICV2JICqj9585IB6hRXNwa+z/ABGvNBLSPANMjuIyqqUjlWRhKrN137ZbZtvYEHjcMnxBhWf4c+JEcyADTLh/kkZDlYyw5Ug4yOR0IyDkEigDpKKy9R1yDTtSs7KSGd3udx3RxMwUKCeMAljnHA6A5OOM2tPeeS033AYO0khUMu07C52ZHb5dvB59eaAMnw9/yHPFn/YVj/8ASK1roK5/w9/yHPFn/YVj/wDSK1roKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOUgn1TRtd19l8OajfQXt6lxDNay2wUqLaGMgiSZGB3Rt29Kt/8JDqn/Qma5/3+sv8A5IroKKAOf/4SHVP+hM1z/v8AWX/yRR/wkOqf9CZrn/f6y/8AkiugooA5/wD4SHVP+hM1z/v9Zf8AyRR/wkOqf9CZrn/f6y/+SK6CigDn/wDhIdU/6EzXP+/1l/8AJFL4ZhvftOu3t7p89h9u1BZ4oZ3jZwgt4I8ny2ZR80bd+mK36KACiiigAooooAKKKKACiiigAooooAKxrvwnoF5ObiTSrdLhus8C+TKfq6Yb9a2aKAOf/wCESt04t9W1yBf7o1KWT9ZCxFH/AAiv/Ue1z/wM/wDrV0FFAHP/APCG6XJzdTaneHuLjUp2U/8AAN+39K09O0fTNIjKabp1rZqeot4VTP1wOau0UAFFFFABRRRQBjXfhPQLyc3EmlW6XDdZ4F8mU/V0w361B/wiVunFvq2uQL/dGpSyfrIWIroKKAOf/wCEV/6j2uf+Bn/1qP8AhDdLk5uptTvD3FxqU7Kf+Ab9v6V0FFAFLTtH0zSIymm6da2anqLeFUz9cDmrtFFABXP+Hv8AkOeLP+wrH/6RWtdBWLeeE9Dv72a8ubBWuJiGkcSMpchQoJwRzhQPwFAF7VdPGq6XcWDTyQJOmx3SONztPUbZFZCCMggqeCaz7bwrY6elkmnzXdoLGynsbXEvmmJJWjbIMu4kqYl2g5AHGCMAR/8ACEeHf+gf/wCRpP8A4qj/AIQjw7/0D/8AyNJ/8VQBY/4Ruz/s77P5k/2nzftP2/cPtH2jGPO3Yxux8uMbNnybdny1c1XS7TWtLuNNv0ke0uU2Sokrxll7jchBwehGeRkHgmsv/hCPDv8A0D//ACNJ/wDFUf8ACEeHf+gf/wCRpP8A4qgDaitYoYIIgGcQACNpXMjjA25LMSxOCcknJycnmpq5/wD4Qjw7/wBA/wD8jSf/ABVH/CEeHf8AoH/+RpP/AIqgA8Pf8hzxZ/2FY/8A0ita6CqWmaRYaNBJDp9ssEcknmOASSzYAySeScKB9AKu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZ69rWsSat4gtdK8RXa6nZ3sCW+lW0UD/AOjeTBJLIw8iSQDDy4bkbtqhWYhW9MrzO6utBj8SeLYdZ8Q2kJ+2o8ek3mopawTn7HbgNJgb2RuUKndGRnKEigAsrzxSNOTVrnWbv7N/adlbwYmtp4ryKS4jjkYYtImCYchWB+bG4fLtZvRL6a4gs5JLS1+1XHAjiMgQEkgZZj0UZySATgHAY4B8jTUPCuraZoupWeuRpqlxqdnI2nx3sULXLNewnzZ7aGQo0+wZZsdySq7VVPXL69i0+zkupkneNMZEEDzOckDhEBY9ew469KAM/RtWvL68vrK/soLe6tPLLm1uTcQ/OCQm8ohEgADFdvCvGcndxsVy/hGxFpLfNp8d9Boku1reK/aYzNOWkaeXE2ZFViyDDYyyuwXDbn6igAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5/xpqMul+GnuotQ/s/8A0u0iku/k/cxvcRo7fOCowjNyQQOtdBXL/EF0j8JmSW8+xRrqFgWusqPJAu4cvlwVGOvzAjjkYoA49tQ8XzaxJbaXrd9f2txKh06R5LeBp4Nqh5h/oLqY1ff8+4ZUx4B8yMydx4YlvftOvWV7qM9/9h1BYYZp0jV9htoJMHy0VT80jdq4u61jwT/wkFjZTa7puoQXCPPcahPqUMzCRAcMZC6tburODF5JwPMmxGmA46D4drYpH4gTTdUk1S0XU0VL2S7+0tMRZ2wZjJk7juz04HQAAYABseIPEsOgzafb/Z5Li4vbiKJUUhQkbTRRNIxPZWmjGBkksOMbmXakkSKNpJHVEQFmZjgADqSa4HxD4d8SJHcXFtqVjdNc6rZy/NpcjzJGt3G0alhOB5cQ5ICqCA7HDMz10Umnavd6hqcVzeRDTriNY0URkkIQwYL83ytz94hs5HpgAG9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUccEMLzPFFGjzPvlZVALttC5b1O1VGT2AHapKKAI5oIblAk8UcqB1cK6hgGVgynnuGAIPYgGpKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKjmghuUCTxRyoHVwrqGAZWDKee4YAg9iAakooAKjjghheZ4oo0eZ98rKoBdtoXLep2qoyewA7VJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Z" alt="" />

奇怪的是,虽然野人有很多,但没有任何两个野人在有生之年处在同一个山洞中,使得小岛一直保持和平与宁静,这让科学家们很是惊奇。他们想知道,至少有多少个山洞,才能维持岛上的和平呢?

 

Input

输入文件的第1行为一个整数N(1<=N<=15),即野人的数目。第2行到第N+1每行为三个整数Ci, Pi, Li (1<=Ci,Pi<=100, 0<=Li<=10^6 ),表示每个野人所住的初始洞穴编号,每年走过的洞穴数及寿命值。

Output

输出文件仅包含一个数M,即最少可能的山洞数。输入数据保证有解,且M不大于10^6。
 

Sample Input

3 1 3 4 2 7 3 3 2 1

Sample Output

6

比赛的时候写这题我写了个瞎二分,然后最后半个小时发现不满足二分性质,就又随性的加上了枚举,于是...得到了20分的安慰分

好吧其实正解就是枚举,我们从小到大枚举山洞的个数

怎么判断是否会有野人相遇呢?若有m个山洞,对于野人i,j,他们相遇的充要条件就是:

Ci+xPi≡Cj+xPj (mod m)

移项可得:Ci-Cj≡x(Pj-Pi) (mod m)

于是我们设 x(Pj-Pi)+ym=Ci-Cj

设A=Pj-Pi B=m C=Ci-Cj,考虑解不定方程Ax+By=C

对于x的最小正整数解,若满足x<=min(L[i],L[j]),那么两个野人就可以在有生之年相遇

既然这样,我们依次枚举两个野人就好

怎么解不定方程...就不说了

#include<cstdio>
#include<algorithm>
using namespace std; const int maxn=;
int n,minc;
int c[maxn],p[maxn],l[maxn];
int gcd(int x,int y) {if (x%y==) return y;else return gcd(y,x%y);}
void exgcd(int A,int B,int &x,int &y)
{
if (!B)
{
x=;y=;return;
}
exgcd(B,A%B,x,y);
int z=x;x=y;y=z-y*(A/B);
}
bool check(int t)
{
for (int i=;i<=n;i++)
{
for (int j=i+;j<=n;j++)
{
int A=p[i]-p[j],B=t,C=c[j]-c[i],x,y;
int gg=gcd(A,B);
if (C%gg==)
{
A/=gg;B/=gg;C/=gg;
exgcd(A,B,x,y);
B=abs(B);
x=((x*C)%B+B)%B;
while (!x) x+=B;
if (x<=min(l[i],l[j])) return ;
}
}
}
return ;
}
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%d%d%d",c+i,p+i,l+i);
minc=max(minc,c[i]);
}
for (int t=minc;;t++) if (check(t)) {printf("%d",t);break;}
return ;
}

[NOI2002] Savage 解题报告(扩展欧几里得)的更多相关文章

  1. bzoj1407 [Noi2002]Savage——扩展欧几里得

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...

  2. JZYZOJ1372 [noi2002]荒岛野人 扩展欧几里得

    http://172.20.6.3/Problem_Show.asp?id=1372 想法其实很好想,但是我扩展欧几里得还是用得不熟练,几乎是硬套模板,大概因为今天一个下午状态都不大好.扩展欧几里得算 ...

  3. Root(hdu5777+扩展欧几里得+原根)2015 Multi-University Training Contest 7

    Root Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Su ...

  4. POJ1061 青蛙的约会(扩展欧几里得)

    题目链接:http://poj.org/problem?id=1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submission ...

  5. HDU1211 密文解锁 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > 题目大意: RSA是个很强大的加密数据的工具,对RSA系统的描述如下: 选择两个大素数p.q,计算n = p * q,F( ...

  6. hdu 1576 A/B 【扩展欧几里得】【逆元】

    <题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...

  7. poj1061-青蛙的约会-(贝祖定理+扩展欧几里得定理+同余定理)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:132162   Accepted: 29199 Descripti ...

  8. [ACM] hdu 3923 Invoker (Poyla计数,高速幂运算,扩展欧几里得或费马小定理)

    Invoker Problem Description On of Vance's favourite hero is Invoker, Kael. As many people knows Kael ...

  9. Root(hdu5777+扩展欧几里得+原根)

    Root                                                                          Time Limit: 30000/1500 ...

随机推荐

  1. [Tools] Using mobile device for debugging your mobile web site

    1. First you have enable "Developer mode" on your mobile device. (Different device might b ...

  2. Libvirt中windows虚拟机的动态内存管理

    非常短的前提 Libvirt支持对虚拟机进行内存动态扩展,可是windows虚拟机首先须要安装virtio-win驱动. KVM提供的virtio-win驱动下载地址: http://www.linu ...

  3. jQuery Mobile(jqm)button的隐藏和显示,包含a标签,圆角和非圆角button

    在移动互联网时代,HTML5开发越来越收到欢迎. 于是各种HTML5的框架都出来了.因为对于jquery的熟悉,jquery mobile 为多数人选择学习的对象.我也是众多追求者之中的一个.近期一直 ...

  4. UVA 1016 - Silly Sort 置换分解 贪心

                                           Silly Sort Your younger brother has an assignment and needs s ...

  5. webpack的像素转vw loader插件

    这是一款针对webpack的像素转vw单位的loader插件. 笔者公司中,h5 rem的开发方案目前已经渐渐开始转向vw方案,因此本工具应运而生. 目前所制作的h5,大部分设计稿分辨率都是750的宽 ...

  6. POJ 1950暴搜

    思路: 暴力枚举好了..每回判断一下-- 用long long会超时 但是10^20会爆int... 不过仔细想一想 超过10^9的数肯定拼不回0啊-- 猥琐用int AC了 (当然可以打表 ) // ...

  7. SpringMVC(三) RESTful架构和文件上传下载

    RESTful架构 REST全名为:Representational State Transfer.资源表现层状态转化.是目前最流行的一种互联网软件架构. 它结构清晰.符合标准.易于理解.扩展方便,所 ...

  8. Android RecyclerView 设置item间隔的方法

    RecyclerView大家常用,但是如何给加载出来的item增加间隔很多人都不知道,下面是方法,直接上代码了: LinearLayoutManager layoutManager = new Lin ...

  9. (转载)15 个 Android 通用流行框架大全

    15 个 Android 通用流行框架大全 时间:2017-03-20 11:36来源:未知 作者:admin 点击: 2089 次 15 个 Android 通用流行框架大全   1. 缓存 Dis ...

  10. e.Row.Attributes.Add

    其实看到属性这个单词,还有点发憷呢,C#里面有个关键词是Attributes, 搞了半天貌似没有弄清楚 e.Row.Attributes.Add()函数的介绍,包括参数,什么是Attributes 就 ...