[luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub
题目大意:
计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==prime]$
题解:
解法一:莫比乌斯反演套路题
其实这样就可以了,但是还可以优化一下子
设T=dp
整除分块就好了,其实这就和 yy的gcd 一样了
解法二:欧拉函数
考虑上面的第一个式子可以化简成
tot是n以内质数的数量
这是因为考虑到每次都两次计算了$\varphi(1)$
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll; const int N=1e7+;
int n,tot;
ll ans;
int prime[];
ll phi[N];
bool vis[N];
void get_phi()
{
phi[]=;
for (int i=;i<=n;i++)
{
if (!vis[i]) {phi[i]=i-;prime[++tot]=i;}
for (int j=;j<=tot&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=;
if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-);
else
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
}
}
for (int i=;i<=n;i++) phi[i]=phi[i-]+phi[i];
}
int main()
{
scanf("%d",&n);
get_phi();
//for (int i=1;i<=n;i++) printf("%d ",phi[i]);
for (int i=;i<=tot;i++)
{
ans+=phi[n/prime[i]];
}
printf("%lld\n",ans*-tot);
return ;
}
[luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)的更多相关文章
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- luogu2658 GCD(莫比乌斯反演/欧拉函数)
link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...
- 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数
https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解
题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...
- [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...
- BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)
题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...
- BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)
一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...
- Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3241 Solved: 1437[Submit][Status][Discuss ...
随机推荐
- 混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码
今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/ ...
- Post请求方式长度參数过长导致參数为空
Post提交方式本身对于參数的长度没有限制,HTTP协议也没有限制. 可是今天在做一个web项目的时候碰到一个问题,当要提交的表单内容达到一定大小时,发现后台代码接收到的參数为空. 查询了一下.发现是 ...
- doT.js变量和数组混合读取方式
可以包裹任意大小的html 变量在其包裹的任意区域都有效 单个变量可以和数组分开展示 最好放置在最下方执行js 数据结构 var data = { "id": "1280 ...
- ES设置查询的相似度算法
similarity Elasticsearch allows you to configure a scoring algorithm or similarity per field. The si ...
- xBIM 基础06 将STEP物理文件转换为XML
系列目录 [已更新最新开发文章,点击查看详细] 一.STEP标准简介 STEP,它是Standard for the Exchange of Product model data的缩写.产品数 ...
- mysql插入数据出现java.lang.NullPointerException
在写购物车持久层的时候,要进行测试的时候居然出现了空指针异常: 最后发现是测试类少了 @RunWith(SpringRunner.class)@SpringBootTest 如下是没改之前的测试类: ...
- [arc076f]Exhausted? - 贪心
题意: 给你m个椅子可以坐人,初始坐标为正整数1~m,有n个人,每个人希望坐的位置$\leq L_i$或者$\geq R_i$,可以添加若干个椅子在任意的实数位置,求最少要添加多少椅子使得所有人都有位 ...
- adb如何连接mumu模拟器并修改Android ID
adb工具下载安装 https://dl.google.com/android/repository/platform-tools-latest-windows.zip 参考:https://blog ...
- wordcontent结对编程
合作者:201631062625 201631062127 代码地址:https://gitee.com/yzpdegit/ts 本次作业链接:https://www.cnblogs.com/yang ...
- Valgrind的安装及简单使用
1.获取源码 wget http://www.valgrind.org/downloads/valgrind-3.14.0.tar.bz2 2.解压缩 tar -jxvf valgrind-3.14. ...