大概思想就是,节点$i$的第$2^{j}$个父节点是他第$2^{j-1}$个父亲的第$2^{j-1}$个父亲

然后可以$O(nlogn)$时间内解决……

没了?

 //fa[i][j]表示i的第2^j个父节点
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
struct edge{
int v,next;
}a[];
int n,q,u,v,rt,tot=,head[],fa[][],dep[];
bool vis[];
void add(int u,int v){
a[++tot].v=v;
a[tot].next=head[u];
head[u]=tot;
}
void cal_dep(int u){
vis[u]=true;
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(!vis[v]){
dep[v]=dep[u]+;
cal_dep(v);
}
}
}
void cal(){
for(int j=;j<=;j++){
for(int i=;i<=n;i++){
fa[i][j]=fa[fa[i][j-]][j-];
}
}
}
int lca(int x,int y){
if(dep[x]<dep[y]){
swap(x,y);
}
int s=dep[x]-dep[y];
for(int i=;i<;i++){
if((<<i)&s)x=fa[x][i];
}
if(x==y)return x;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
}
int main(){
memset(head,-,sizeof(head));
memset(fa,,sizeof(fa));
memset(dep,,sizeof(dep));
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&q);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);
fa[v][]=u;
//if(!fa[u][0])rt=u;
}
dep[]=;
cal_dep();
cal();
for(int i=;i<=q;i++){
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return ;
}
/*
16 4
1 2
1 3
2 4
2 5
2 6
3 7
4 8
4 9
5 10
7 11
7 12
10 13
10 14
10 15
12 16
4 7
9 16
11 16
15 8
------
1
1
7
2
*/

树上倍增求LCA的更多相关文章

  1. [学习笔记] 树上倍增求LCA

    倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...

  2. 树上倍增求LCA(最近公共祖先)

    前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...

  3. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  4. 树上倍增求LCA及例题

    先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...

  5. Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)

    题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...

  6. 树上倍增求LCA详解

    LCA(least common ancestors)最近公共祖先 指的就是对于一棵有根树,若结点z既是x的祖先,也是y的祖先(不要告诉我你不知道什么是祖先),那么z就是结点x和y的最近公共祖先. 定 ...

  7. [luogu3379]最近公共祖先(树上倍增求LCA)

    题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...

  8. CF 519E(树上倍增求lca)

    传送门:A and B and Lecture Rooms 题意:给定一棵树,每次询问到达点u,v距离相等的点有多少个. 分析:按情况考虑: 1.abs(deep[u]-deep[v])%2==1时, ...

  9. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

随机推荐

  1. Xcode7 下导入第三方库 图文介绍

    网上没有很好的图文介绍,干脆我自己写一个好了,方便新手入门. 这里以导入著名的第三方网络库AFNetWorking v3.0.4和数据库FMDB v2.6.2为例进行说明. 好,下面开始. 下载源文件 ...

  2. LeetCode Golang 9.回文数

    9. 回文数 第一种办法 :itoa 转换为字符串进行处理: package main import ( "strconv" "fmt" ) //判断一个整数是 ...

  3. Eclipse中重置(还原)GIT分支

    重置(还原)GIT分支: 1.  右击项目——Team——Reset…: 2.  在弹出的Reset框中选择要重置(还原)的分支——Reset,即可完成.

  4. Codeforces 667B Coat of Anticubism

    链接:传送门 题意:题目balabala说了一大堆,然而并没什么卵用,给你n个数,将这个集合分割成两部分,构成三角形的两个边,让你求补充的那个边最短是多长 思路:三角形三边具有 a + b > ...

  5. freeswitch mod_xml_curl

    (猜想)调用htttp 进行动态用户注册 流程 用户通过客户端进行注册 填写sip账号密码 进入fs, fs发送http请求配置得地址,request中带着user,key 一些参数, 服务器返回xm ...

  6. 使用tf.ConfigProto()配置Session运行参数和GPU设备指定

    参考链接:https://blog.csdn.net/dcrmg/article/details/79091941 tf.ConfigProto()函数用在创建session的时候,用来对sessio ...

  7. 树形dp复习 树上依赖背包问题

    选课 今天又看了一下这道题,竟然AC不了了 自己的学习效率有点低下 要明白本质,搞透彻 #include<bits/stdc++.h> #define REP(i, a, b) for(r ...

  8. 微信小程序开发入门(一)

     小程序学习入门--(一) 最近自己学习微信小程序的过程当中自己总结出来的知识点,我会不断地更新和完善! 小程序的开发工具 一台电脑 熟悉HTML.CSS.JS基本语法 开发工具: 微信web开发者工 ...

  9. 【codeforces 234F】Fence

    [题目链接]:http://codeforces.com/problemset/problem/234/F [题意] 你有n块板要凃油漆; 然后每块板有高度h[i];(宽度都为1) 然后每块板只能凃同 ...

  10. 可编辑div,将光标定位到文本之后

    类似qq回复一样,某人评论之后,在对评论进行回复之后,将光标定位到文本之后: function set_focus() { el=document.getElementById('guestbook_ ...