大概思想就是,节点$i$的第$2^{j}$个父节点是他第$2^{j-1}$个父亲的第$2^{j-1}$个父亲

然后可以$O(nlogn)$时间内解决……

没了?

 //fa[i][j]表示i的第2^j个父节点
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
struct edge{
int v,next;
}a[];
int n,q,u,v,rt,tot=,head[],fa[][],dep[];
bool vis[];
void add(int u,int v){
a[++tot].v=v;
a[tot].next=head[u];
head[u]=tot;
}
void cal_dep(int u){
vis[u]=true;
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(!vis[v]){
dep[v]=dep[u]+;
cal_dep(v);
}
}
}
void cal(){
for(int j=;j<=;j++){
for(int i=;i<=n;i++){
fa[i][j]=fa[fa[i][j-]][j-];
}
}
}
int lca(int x,int y){
if(dep[x]<dep[y]){
swap(x,y);
}
int s=dep[x]-dep[y];
for(int i=;i<;i++){
if((<<i)&s)x=fa[x][i];
}
if(x==y)return x;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
}
int main(){
memset(head,-,sizeof(head));
memset(fa,,sizeof(fa));
memset(dep,,sizeof(dep));
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&q);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);
fa[v][]=u;
//if(!fa[u][0])rt=u;
}
dep[]=;
cal_dep();
cal();
for(int i=;i<=q;i++){
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return ;
}
/*
16 4
1 2
1 3
2 4
2 5
2 6
3 7
4 8
4 9
5 10
7 11
7 12
10 13
10 14
10 15
12 16
4 7
9 16
11 16
15 8
------
1
1
7
2
*/

树上倍增求LCA的更多相关文章

  1. [学习笔记] 树上倍增求LCA

    倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...

  2. 树上倍增求LCA(最近公共祖先)

    前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...

  3. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  4. 树上倍增求LCA及例题

    先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...

  5. Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)

    题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...

  6. 树上倍增求LCA详解

    LCA(least common ancestors)最近公共祖先 指的就是对于一棵有根树,若结点z既是x的祖先,也是y的祖先(不要告诉我你不知道什么是祖先),那么z就是结点x和y的最近公共祖先. 定 ...

  7. [luogu3379]最近公共祖先(树上倍增求LCA)

    题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...

  8. CF 519E(树上倍增求lca)

    传送门:A and B and Lecture Rooms 题意:给定一棵树,每次询问到达点u,v距离相等的点有多少个. 分析:按情况考虑: 1.abs(deep[u]-deep[v])%2==1时, ...

  9. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

随机推荐

  1. HDU 3763 CD【二分查找】

    解题思路:给出两个数列an,bn,求an和bn中相同元素的个数因为注意到n的取值是0到1000000,所以可以用二分查找来做,因为题目中给出的an,bn,已经是单调递增的,所以不用排序了,对于输入的每 ...

  2. JSp获取到当前用户的全部session

    <%@page import="java.util.Enumeration"%> <% for (Enumeration<?> e = session ...

  3. Redis:基础知识及其常用数据类型和关键字

    Redis: Redis是什么: REmote DIctionary Server(远程字典服务器) 是完全开源免费的,用C语言编写的,遵守BSD协议,是一个高性能的(Key-Value)分布式内存数 ...

  4. MD5加密技术

    前几天,在看OpenVXI3.4的时候,偶然发现了几个奇怪的文件,那就是OpenVXI-3.4\src\cache下面的,base64.c,base64.h,md5.c,md5.h.既然有人把源代码给 ...

  5. 【codeforces 235B】Let's Play Osu!

    [题目链接]:http://codeforces.com/problemset/problem/235/B [题意] 让你玩一个游戏,游戏结果由一个长度为n的01字符组成; 这个结果的分数与连续的1的 ...

  6. shell 的变量

    一.自定义变量 1.字母或者下划线开头,由字母.数字.下划线组成,大小写敏感,在使用变量时,要在变量前加上前缀 $,一般变量由大写字母表示,并且英文开头,"=" 两边应没有空格.如 ...

  7. 循环语句第1种 LOOP ... END LOOP;

     7)循环语句  --------第1种----------   LOOP ... END LOOP;    declare    n number(3) := 1;  begin    LOOP   ...

  8. myeclipse导入工程 Some projects cannot be imported because they already exist in the workspace

    问题描述: 1 第一次从外部导入工程或者新建工程,成功: 2 删除该工程,但是没有选择delete project contents on disk 3 再次需要该工程,导入该工程时出现警告:Some ...

  9. POJ 2447

    挺水的一题.其实只要理解了RSA算法,就知道要使用大整数分解的方法来直接模拟了. 不过,要注意两个INT64的数相乘来超范围 #include <iostream> #include &l ...

  10. 【SPOJ-GSHOP】Rama and Friends【贪心】【细节】

    题意: 给出n个非严格递增的整数(可能有负数),必须操作k次.每次能够把当中一个数变为它的相反数,使得终于的数列和最大. 输出这个最大和. 考验怎样出坑数据卡自己的程序... #include < ...