树上倍增求LCA
大概思想就是,节点$i$的第$2^{j}$个父节点是他第$2^{j-1}$个父亲的第$2^{j-1}$个父亲
然后可以$O(nlogn)$时间内解决……
没了?
//fa[i][j]表示i的第2^j个父节点
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
struct edge{
int v,next;
}a[];
int n,q,u,v,rt,tot=,head[],fa[][],dep[];
bool vis[];
void add(int u,int v){
a[++tot].v=v;
a[tot].next=head[u];
head[u]=tot;
}
void cal_dep(int u){
vis[u]=true;
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(!vis[v]){
dep[v]=dep[u]+;
cal_dep(v);
}
}
}
void cal(){
for(int j=;j<=;j++){
for(int i=;i<=n;i++){
fa[i][j]=fa[fa[i][j-]][j-];
}
}
}
int lca(int x,int y){
if(dep[x]<dep[y]){
swap(x,y);
}
int s=dep[x]-dep[y];
for(int i=;i<;i++){
if((<<i)&s)x=fa[x][i];
}
if(x==y)return x;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
}
int main(){
memset(head,-,sizeof(head));
memset(fa,,sizeof(fa));
memset(dep,,sizeof(dep));
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&q);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);
fa[v][]=u;
//if(!fa[u][0])rt=u;
}
dep[]=;
cal_dep();
cal();
for(int i=;i<=q;i++){
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return ;
}
/*
16 4
1 2
1 3
2 4
2 5
2 6
3 7
4 8
4 9
5 10
7 11
7 12
10 13
10 14
10 15
12 16
4 7
9 16
11 16
15 8
------
1
1
7
2
*/
树上倍增求LCA的更多相关文章
- [学习笔记] 树上倍增求LCA
倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...
- 树上倍增求LCA(最近公共祖先)
前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...
- [算法]树上倍增求LCA
LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...
- 树上倍增求LCA及例题
先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...
- Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)
题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...
- 树上倍增求LCA详解
LCA(least common ancestors)最近公共祖先 指的就是对于一棵有根树,若结点z既是x的祖先,也是y的祖先(不要告诉我你不知道什么是祖先),那么z就是结点x和y的最近公共祖先. 定 ...
- [luogu3379]最近公共祖先(树上倍增求LCA)
题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...
- CF 519E(树上倍增求lca)
传送门:A and B and Lecture Rooms 题意:给定一棵树,每次询问到达点u,v距离相等的点有多少个. 分析:按情况考虑: 1.abs(deep[u]-deep[v])%2==1时, ...
- 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)
洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...
随机推荐
- ZBrush常用快捷键
ZBrush是一款数字雕刻和绘画软件,它以强大的功能和直观的工作流程彻底改变了整个三维雕刻行业.强大的功能离不开便捷的操作,为此ZBrush®提供了一系列常用操作快捷键,熟练掌握这些快捷键,可帮助您节 ...
- 树莓派搭建 Google TV
出处:http://my.oschina.net/funnky/blog/142067 树莓派搭建 Google TV 目录:[ - ] Google TV是啥玩意 ? 搭建我们自己的Google T ...
- 小程序--wepy省市区三级联动选择
产品老哥对项目再一次进行关爱, 新增页面, 新增需求, 很完美........ 不多说, 记录一下新增东西中的省市区联动选择, (这里全国地区信息是在本地, 但不建议这么做, 因为js文件太大.. 建 ...
- [luogu4195 Spoj3105] Mod (大步小步)
传送门 题目描述 已知数a,p,b,求满足a^x≡b(mod p)的最小自然数x. 输入输出格式 输入格式: 每个测试文件中最多包含100组测试数据. 每组数据中,每行包含3个正整数a,p,b. 当a ...
- 我的Linux系统开始学习的过程
Linux系统,不知大家是否了解.接触计算机不多或对计算机不感冒的人可能对其比较陌生,曾经的我也是.上大学前的我的确对Linux一无所知,那时候接触面窄,都没有听说过此名字,上了大学后,身边的人有学习 ...
- 什么叫openapi
Open API即开放API,也称开放平台. 所谓的开放API(OpenAPI)是服务型网站常见的一种应用,网站的服务商将自己的网站服务封装成一系列API(Application Programmin ...
- 菜鸟学Struts——I18N对国际化的支持
大家肯定都喜欢玩游戏吧. 对于是一个游戏迷的话,肯定玩过不少很棒的经典单机游戏.比方说,国产的<古墓丽影>.<刺客信条>.<鬼泣>国产的仙剑.古剑等.在众多游戏系列 ...
- [React] Understanding setState in componentDidMount to Measure Elements Without Transient UI State
In this lesson we'll explore using setState to synchronously update in componentDidMount. This allow ...
- ORA 12505 Listener does not currently know of SID given in connection descriptor
oracle数据库正常启动后.在本地能够正常訪问,可是远程使用sqldevelop却不能訪问.提示ORA 12505 Listener does not currently know of SID g ...
- oracle实现自增id
--oracle实现自增id --创建一张T_StudentInfo表 create table T_StudentInfo ( "id" integer not null pri ...