大概思想就是,节点$i$的第$2^{j}$个父节点是他第$2^{j-1}$个父亲的第$2^{j-1}$个父亲

然后可以$O(nlogn)$时间内解决……

没了?

 //fa[i][j]表示i的第2^j个父节点
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
struct edge{
int v,next;
}a[];
int n,q,u,v,rt,tot=,head[],fa[][],dep[];
bool vis[];
void add(int u,int v){
a[++tot].v=v;
a[tot].next=head[u];
head[u]=tot;
}
void cal_dep(int u){
vis[u]=true;
for(int tmp=head[u];tmp!=-;tmp=a[tmp].next){
int v=a[tmp].v;
if(!vis[v]){
dep[v]=dep[u]+;
cal_dep(v);
}
}
}
void cal(){
for(int j=;j<=;j++){
for(int i=;i<=n;i++){
fa[i][j]=fa[fa[i][j-]][j-];
}
}
}
int lca(int x,int y){
if(dep[x]<dep[y]){
swap(x,y);
}
int s=dep[x]-dep[y];
for(int i=;i<;i++){
if((<<i)&s)x=fa[x][i];
}
if(x==y)return x;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
}
int main(){
memset(head,-,sizeof(head));
memset(fa,,sizeof(fa));
memset(dep,,sizeof(dep));
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&q);
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
add(u,v);
fa[v][]=u;
//if(!fa[u][0])rt=u;
}
dep[]=;
cal_dep();
cal();
for(int i=;i<=q;i++){
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
return ;
}
/*
16 4
1 2
1 3
2 4
2 5
2 6
3 7
4 8
4 9
5 10
7 11
7 12
10 13
10 14
10 15
12 16
4 7
9 16
11 16
15 8
------
1
1
7
2
*/

树上倍增求LCA的更多相关文章

  1. [学习笔记] 树上倍增求LCA

    倍增这种东西,听起来挺高级,其实功能还没有线段树强大.线段树支持修改.查询,而倍增却不能支持修改,但是代码比线段树简单得多,而且当倍增这种思想被应用到树上时,它的价值就跟坐火箭一样,噌噌噌地往上涨. ...

  2. 树上倍增求LCA(最近公共祖先)

    前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...

  3. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  4. 树上倍增求LCA及例题

    先瞎扯几句 树上倍增的经典应用是求两个节点的LCA 当然它的作用不仅限于求LCA,还可以维护节点的很多信息 求LCA的方法除了倍增之外,还有树链剖分.离线tarjan ,这两种日后再讲(众人:其实是你 ...

  5. Codeforces 609E (Kruskal求最小生成树+树上倍增求LCA)

    题面 传送门 题目大意: 给定一个无向连通带权图G,对于每条边(u,v,w)" role="presentation" style="position: rel ...

  6. 树上倍增求LCA详解

    LCA(least common ancestors)最近公共祖先 指的就是对于一棵有根树,若结点z既是x的祖先,也是y的祖先(不要告诉我你不知道什么是祖先),那么z就是结点x和y的最近公共祖先. 定 ...

  7. [luogu3379]最近公共祖先(树上倍增求LCA)

    题意:求最近公共祖先. 解题关键:三种方法,1.st表 2.倍增法 3.tarjan 此次使用倍增模板(最好采用第一种,第二种纯粹是习惯) #include<cstdio> #includ ...

  8. CF 519E(树上倍增求lca)

    传送门:A and B and Lecture Rooms 题意:给定一棵树,每次询问到达点u,v距离相等的点有多少个. 分析:按情况考虑: 1.abs(deep[u]-deep[v])%2==1时, ...

  9. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

随机推荐

  1. apache include 文件包含引用的方法 报错 [an error occurred while processing this directive]

    今天遇到在某平台买的虚拟主机服务器不支持    下面的这样的写法 <!--#Include file="/templets/2013new/header.htm"--> ...

  2. Unity官方宣传片Adam 播放地址

    https://www.youtube.com/watch?v=GXI0l3yqBrA 适合吸引初学的人走下去,不知道你们初次看的时候什么感觉,反正我被震撼到了!(听说资源包有10个G!官方可下载) ...

  3. day10 强制类型转换(更新)

    目录 强制类型转换 int() str() list() tuple() set() dict() 总结 强制类型转换 直接看总结 # 定义各个数据类型的值 num_int = 123 num_flo ...

  4. 路飞学城Python-Day48

    49-清除浮动1:给父盒子设置高度 给父盒子设置高度,这种方式不灵活,公司的产品修改的时候,要求父盒子高度变大, 不可能去手动修改 尽量不要给父元素去修改高度,不建议这样的方式 <!DOCTYP ...

  5. springcloud关键词解释和基础代码

    原文来自某位大神(不诉薄凉),感觉很好,分享出来. SpringCloud微服务框架搭建 一.微服务架构 1.1什么是分布式 不同模块部署在不同服务器上 作用:分布式解决网站高并发带来问题 1.2什么 ...

  6. Vue学习之路第七篇:跑马灯项目实现

    前面六篇讲解了Vue的一些基础知识,正所谓:学以致用,今天我们将用前六篇的基础知识,来实现类似跑马灯的项目. 学前准备: 需要掌握定时器的两个函数:setInterval和clearInterval以 ...

  7. js 获取对象长度

    获取对象的程度,可以这样获取: var myObj = {a:1,b:2,c:3} var arr = Object.keys(myObj);var len = arr.length  console ...

  8. zTree -- jQuery 树插件实现点击文字展开子节点

    新版本的zTree是单击+号展开子项,点击文字选中该项,双击文字展开子项 项目用的是3.5版本的,如果要点击文字展开子项暂时没查到资料,自己琢磨了下 项目用的是jquery.ztree.core-3. ...

  9. sql limit 的用法

    sql语句里的limit使用方法 .    SELECT * FROM table  LIMIT [offset,] rows | rows OFFSET offset    在我们使用查询语句的时候 ...

  10. js实现鼠标吸附线条效果

    如图,箭头→为鼠标位置,鼠标会带有吸附着一些线条的效果,具体效果可在我的博客查看,当然,这也是可很受欢迎很常见的效果了=3= <script> !function(){ function ...