题意  给你一些矩形框堆叠后的鸟瞰图  推断这些矩形框的堆叠顺序  每一个矩形框满足每边都至少有一个点可见  输入保证至少有一个解 按字典序输出全部可行解

和上一题有点像  仅仅是这个要打印全部的可行方案  建图还是类似  由于每一个矩形框的四边都有点可见  所以每一个矩形框的左上角和右下角的坐标是能够确定的  然后一个矩形框上有其他字符时  就让这个矩形框相应的字符和那个其他字符建立一个小于关系  由于要打印方案  所以在有多个入度为0的点时须要用DFS对每种选择都进行一遍拓扑排序

#include <cstdio>
#include <cstring>
using namespace std;
const int N = 50;
char ans[N], g[N][N], tp[N][N];
int x1[N], y1[N], x2[N], y2[N];
//(x1,y1)为相应字母的左上角坐标 (x2,y2)为右下
int in[N], n; void addTopo(int i, int j, int c)
{
int t = g[i][j] - 'A';
if(t != c && !tp[c][t])
{
++in[t];
tp[c][t] = 1;
}
} void build()
{
memset(tp, 0, sizeof(tp)); //tp[i][j] = 1表示有i < j的关系
for(int c = n = 0; c < 26; ++c)
{
if(in[c] < 0) continue;
for(int i = x1[c]; i <= x2[c]; ++i)
{
addTopo(i, y1[c], c);
addTopo(i, y2[c], c);
}
for(int j = y1[c]; j <= y2[c]; ++j)
{
addTopo(x1[c], j, c);
addTopo(x2[c], j, c);
}
++n;//统计出现了多少个字符
}
} void topoSort(int k)
{
if(k == n)
{
ans[k] = 0;
puts(ans);
return;
} //从前往后找入度为0的点保证升序
for(int i = 0; i < 26; ++i)
{
if(in[i] == 0)
{
ans[k] = i + 'A'; //这一位放i
in[i] = -1;
for(int j = 0; j < 26; ++j)
if(tp[i][j]) --in[j]; topoSort(k + 1); //找下一位 in[i] = 0; //回溯
for(int j = 0; j < 26; ++j)
if(tp[i][j]) ++in[j];
}
}
} int main()
{
int h, w, c;
while(~scanf("%d%d", &h, &w))
{
for(int i = 0; i < 26; ++i)
{
x1[i] = y1[i] = N;
x2[i] = y2[i] = 0;
} memset(in, -1, sizeof(in));
for(int i = 0; i < h; ++i)
{
scanf("%s", g[i]);
for(int j = 0; j < w; ++j)
{
if((c = g[i][j] - 'A') < 0) continue; //g[i][j] ='.'
if(i < x1[c]) x1[c] = i;
if(i > x2[c]) x2[c] = i;
if(j < y1[c]) y1[c] = j;
if(j > y2[c]) y2[c] = j;
in[c] = 0; //出现过的字母in初始为0 否则为-1
}
}
build();
topoSort(0);
}
return 0;
}

Frame Stacking

Description

Consider the following 5 picture frames placed on an 9 x 8 array.

........ ........ ........ ........ .CCC....

EEEEEE.. ........ ........ ..BBBB.. .C.C....

E....E.. DDDDDD.. ........ ..B..B.. .C.C....

E....E.. D....D.. ........ ..B..B.. .CCC....

E....E.. D....D.. ....AAAA ..B..B.. ........

E....E.. D....D.. ....A..A ..BBBB.. ........

E....E.. DDDDDD.. ....A..A ........ ........

E....E.. ........ ....AAAA ........ ........

EEEEEE.. ........ ........ ........ ........

    1        2        3        4        5   

Now place them on top of one another starting with 1 at the bottom and ending up with 5 on top. If any part of a frame covers another it hides that part of the frame below. 



Viewing the stack of 5 frames we see the following.

.CCC....

ECBCBB..

DCBCDB..

DCCC.B..

D.B.ABAA

D.BBBB.A

DDDDAD.A

E...AAAA

EEEEEE..

In what order are the frames stacked from bottom to top? The answer is EDABC. 



Your problem is to determine the order in which the frames are stacked from bottom to top given a picture of the stacked frames. Here are the rules: 



1. The width of the frame is always exactly 1 character and the sides are never shorter than 3 characters. 



2. It is possible to see at least one part of each of the four sides of a frame. A corner shows two sides. 



3. The frames will be lettered with capital letters, and no two frames will be assigned the same letter.

Input

Each input block contains the height, h (h<=30) on the first line and the width w (w<=30) on the second. A picture of the stacked frames is then given as h strings with w characters each. 

Your input may contain multiple blocks of the format described above, without any blank lines in between. All blocks in the input must be processed sequentially.

Output

Write the solution to the standard output. Give the letters of the frames in the order they were stacked from bottom to top. If there are multiple possibilities for an ordering, list all such possibilities in alphabetical order, each one on a separate line.
There will always be at least one legal ordering for each input block. List the output for all blocks in the input sequentially, without any blank lines (not even between blocks).

Sample Input

9
8
.CCC....
ECBCBB..
DCBCDB..
DCCC.B..
D.B.ABAA
D.BBBB.A
DDDDAD.A
E...AAAA
EEEEEE..

Sample Output

EDABC

POJ 1128 Frame Stacking(拓扑排序&#183;打印字典序)的更多相关文章

  1. POJ 1128 Frame Stacking (拓扑排序)

    题目链接 Description Consider the following 5 picture frames placed on an 9 x 8 array. ........ ........ ...

  2. POJ 1128 Frame Stacking 拓扑排序+暴搜

    这道题输出特别坑.... 题目的意思也不太好理解.. 就解释一下输出吧.. 它让你 从下往上输出. 如果有多种情况,按照字典序从小往大输出... 就是这个多种情况是怎么产生的呢. 下面给一组样例. 很 ...

  3. Frame Stacking 拓扑排序 图论

    Description Consider the following 5 picture frames placed on an 9 x 8 array. ........ ........ .... ...

  4. POJ 2367 (裸拓扑排序)

    http://poj.org/problem?id=2367 题意:给你n个数,从第一个数到第n个数,每一行的数字代表排在这个行数的后面的数字,直到0. 这是一个特别裸的拓扑排序的一个题目,拓扑排序我 ...

  5. poj 3687 Labeling Balls(拓扑排序)

    题目:http://poj.org/problem?id=3687题意:n个重量为1~n的球,给定一些编号间的重量比较关系,现在给每个球编号,在符合条件的前提下使得编号小的球重量小.(先保证1号球最轻 ...

  6. [ACM] POJ 3687 Labeling Balls (拓扑排序,反向生成端)

    Labeling Balls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10161   Accepted: 2810 D ...

  7. poj 2762(强连通分量+拓扑排序)

    题目链接:http://poj.org/problem?id=2762 题意:给出一个有向图,判断任意的两个顶点(u,v)能否从u到达v,或v到达u,即单连通,输出Yes或No. 分析:对于同一个强连 ...

  8. POJ 2585.Window Pains 拓扑排序

    Window Pains Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1888   Accepted: 944 Descr ...

  9. POJ 1270 Following Orders 拓扑排序

    http://poj.org/problem?id=1270 题目大意: 给你一串序列,然后再给你他们部分的大小,要求你输出他们从小到大的所有排列. 如a b f g 然后 a<b ,b< ...

随机推荐

  1. [转]Android ListView的Item高亮显示的办法

    本文转自:http://www.cnblogs.com/dyllove98/archive/2013/07/31/3228601.html 在我们使用ListView的时候,经常会遇到某一项(Item ...

  2. 【PL/SQL】用星号拼出金字塔

    代码中首先声明了几个变量,然后使用嵌套循环去输出空格和星号,其中: 每层空格数=总层数-该层层数 每层星号数=当前层数*2-1 代码如下: declare v_number1 ); --外层循环控制金 ...

  3. jQuery——插件制作

    1.$.fn.extend:扩展 jQuery 元素集来提供新的方法(通常用来制作插件),使用时是$('选择器').方法 2.$.extend:扩展jQuery对象本身,用来在jQuery命名空间上增 ...

  4. js 时间 Fri Dec 12 2014 08:00:00 GMT+0800

    第一种var d = new Date('Fri Dec 12 2014 08:00:00 GMT+0800'); ) + '-' + d.getDate() + ' ' + d.getHours() ...

  5. todey

    <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/> 框架集fromset ...

  6. Git环境部署

     部署git 服务器环境   系统环境准备 192.168.30.25   master     git   gitlab 192.168.30.26   client      git 关闭防火墙 ...

  7. IDEA 创建一个普通的java项目

    IntelliJ IDEA 如何创建一个普通的java项目,及创建java文件并运行 首先,确保idea软件正确安装完成,java开发工具包jdk安装完成. IntelliJ IDEA下载地址:htt ...

  8. php第十九节课

    JQUERY <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...

  9. 【原创】使用HTML5+canvas+JavaScript开发的原生中国象棋游戏及源码分享

    目前已经实现的功能: V1.0 : 实现棋子的布局,画布及游戏场景的初始化V2.0 : 实现棋子的颜色改变V3.0 :实现所有象棋的走棋规则V4.0 : 实现所有棋子的吃子功能 GItHub源码下载地 ...

  10. Linux之FTP/TFTP(vsftp、vsftpd) HTTP(httpd、apache) DHCP(dhcpd)

    FTP/TFTP(vsftp.vsftpd): FTP是File Transfer Protocol(文件传输协议)而中文简称为"文传协议".用于Internet上的控制文件的双向 ...