0613pt-query-digest分析慢查询日志
转自http://www.jb51.net/article/107698.htm
一、简介
pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog、General log、slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdump抓取的MySQL协议数据来进行分析。可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。
二、安装pt-query-digest
1.下载页面:https://www.percona.com/doc/percona-toolkit/2.2/installation.html
2.perl的模块
yum install -y perl-CPAN perl-Time-HiRes
3.安装步骤
方法一:rpm安装
cd /usr/local/src
wget percona.com/get/percona-toolkit.rpm
yum install -y percona-toolkit.rpm
工具安装目录在:/usr/bin
方法二:源码安装
cd /usr/local/src
wget percona.com/get/percona-toolkit.tar.gz
tar zxf percona-toolkit.tar.gz
cd percona-toolkit-2.2.19
perl Makefile.PL PREFIX=/usr/local/percona-toolkit
make && make install
工具安装目录在:/usr/local/percona-toolkit/bin
4.各工具用法简介(详细内容:https://www.percona.com/doc/percona-toolkit/2.2/index.html)
(1)慢查询日志分析统计
pt-query-digest /usr/local/mysql/data/slow.log
(2)服务器摘要
pt-summary
(3)服务器磁盘监测
pt-diskstats
(4)mysql服务状态摘要
pt-mysql-summary -- --user=root --password=root
三、pt-query-digest语法及重要选项
- pt-query-digest [OPTIONS] [FILES] [DSN]
- --create-review-table 当使用--review参数把分析结果输出到表中时,如果没有表就自动创建。
- --create-history-table 当使用--history参数把分析结果输出到表中时,如果没有表就自动创建。
- --filter 对输入的慢查询按指定的字符串进行匹配过滤后再进行分析
- --limit 限制输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。
- --host mysql服务器地址
- --user mysql用户名
- --password mysql用户密码
- --history 将分析结果保存到表中,分析结果比较详细,下次再使用--history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。
- --review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用--review时,如果存在相同的语句分析,就不会记录到数据表中。
- --output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。
- --since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。
- --until 截止时间,配合—since可以分析一段时间内的慢查询。
四、分析pt-query-digest输出结果
第一部分:总体统计结果
Overall:总共有多少条查询
Time range:查询执行的时间范围
unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询
total:总计 min:最小 max:最大 avg:平均
95%:把所有值从小到大排列,位置位于95%的那个数,这个数一般最具有参考价值
median:中位数,把所有值从小到大排列,位置位于中间那个数
# 该工具执行日志分析的用户时间,系统时间,物理内存占用大小,虚拟内存占用大小
# 340ms user time, 140ms system time, 23.99M rss, 203.11M vsz
# 工具执行时间
# Current date: Fri Nov 25 02:37:18 2016
# 运行分析工具的主机名
# Hostname: localhost.localdomain
# 被分析的文件名
# Files: slow.log
# 语句总数量,唯一的语句数量,QPS,并发数
# Overall: 2 total, 2 unique, 0.01 QPS, 0.01x concurrency ________________
# 日志记录的时间范围
# Time range: 2016-11-22 06:06:18 to 06:11:40
# 属性 总计 最小 最大 平均 95% 标准 中等
# Attribute total min max avg 95% stddev median
# ============ ======= ======= ======= ======= ======= ======= =======
# 语句执行时间
# Exec time 3s 640ms 2s 1s 2s 999ms 1s
# 锁占用时间
# Lock time 1ms 0 1ms 723us 1ms 1ms 723us
# 发送到客户端的行数
# Rows sent 5 1 4 2.50 4 2.12 2.50
# select语句扫描行数
# Rows examine 186.17k 0 186.17k 93.09k 186.17k 131.64k 93.09k
# 查询的字符数
# Query size 455 15 440 227.50 440 300.52 227.50
第二部分:查询分组统计结果
Rank:所有语句的排名,默认按查询时间降序排列,通过--order-by指定
Query ID:语句的ID,(去掉多余空格和文本字符,计算hash值)
Response:总的响应时间
time:该查询在本次分析中总的时间占比
calls:执行次数,即本次分析总共有多少条这种类型的查询语句
R/Call:平均每次执行的响应时间
V/M:响应时间Variance-to-mean的比率
Item:查询对象
# Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ============= ===== ====== ===== ===============
# 1 0xF9A57DD5A41825CA 2.0529 76.2% 1 2.0529 0.00 SELECT
# 2 0x4194D8F83F4F9365 0.6401 23.8% 1 0.6401 0.00 SELECT wx_member_base
第三部分:每一种查询的详细统计结果
由下面查询的详细统计结果,最上面的表格列出了执行次数、最大、最小、平均、95%等各项目的统计。
ID:查询的ID号,和上图的Query ID对应
Databases:数据库名
Users:各个用户执行的次数(占比)
Query_time distribution :查询时间分布, 长短体现区间占比,本例中1s-10s之间查询数量是10s以上的两倍。
Tables:查询中涉及到的表
Explain:SQL语句
# Query 1: 0 QPS, 0x concurrency, ID 0xF9A57DD5A41825CA at byte 802 ______
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.00
# Time range: all events occurred at 2016-11-22 06:11:40
# Attribute pct total min max avg 95% stddev median
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 50 1
# Exec time 76 2s 2s 2s 2s 2s 0 2s
# Lock time 0 0 0 0 0 0 0 0
# Rows sent 20 1 1 1 1 1 0 1
# Rows examine 0 0 0 0 0 0 0 0
# Query size 3 15 15 15 15 15 0 15
# String:
# Databases test
# Hosts 192.168.8.1
# Users mysql
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s ################################################################
# 10s+
# EXPLAIN /*!50100 PARTITIONS*/
select sleep(2)\G
五、用法示例
1.直接分析慢查询文件:
pt-query-digest slow.log > slow_report.log
2.分析最近12小时内的查询:
pt-query-digest --since=12h slow.log > slow_report2.log
3.分析指定时间范围内的查询:
pt-query-digest slow.log --since '2017-01-07 09:30:00' --until '2017-01-07 10:00:00'> > slow_report3.log
4.分析指含有select语句的慢查询
pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log> slow_report4.log
5.针对某个用户的慢查询
pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log> slow_report5.log
6.查询所有所有的全表扫描或full join的慢查询
pt-query-digest --filter '(($event->{Full_scan} || "") eq "yes") ||(($event->{Full_join} || "") eq "yes")' slow.log> slow_report6.log
7.把查询保存到query_review表
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_review--create-review-table slow.log
8.把查询保存到query_history表
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_history--create-review-table slow.log_0001
pt-query-digest --user=root –password=abc123 --review h=localhost,D=test,t=query_history--create-review-table slow.log_0002
9.通过tcpdump抓取mysql的tcp协议数据,然后再分析
tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > mysql.tcp.txt
pt-query-digest --type tcpdump mysql.tcp.txt> slow_report9.log
10.分析binlog
mysqlbinlog mysql-bin.000093 > mysql-bin000093.sql
pt-query-digest --type=binlog mysql-bin000093.sql > slow_report10.log
11.分析general log
pt-query-digest --type=genlog localhost.log > slow_report11.log
总结
写入到某一张表pt-query-digest --review h=localhost,p=123456,D=test,t=query_review2 /wangqifanps/wangfiles/AMOLserver-slow.log
0613pt-query-digest分析慢查询日志的更多相关文章
- python 分析慢查询日志生成报告
python分析Mysql慢查询.通过Python调用开源分析工具pt-query-digest生成json结果,Python脚本解析json生成html报告. #!/usr/bin/env pyth ...
- pt-query-digest分析mysql查询日志
[root@hank-yoon log]# pt-query-digest slowq.log # 200ms user time, 10ms system time, 24.39M rss, 205 ...
- Mysql系列(十一)—— 性能分析慢查询日志
转载自:http://www.cnblogs.com/kerrycode/p/5593204.html 慢查询日志概念 MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响 ...
- MySQL之pt-query-digest分析慢查询日志的详情介绍
一.简介 pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog.General log.slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdu ...
- pt-query-digest怎么分析慢查询日志分析数据
在进行使用linux系统作为服务器的情况,那几需要进行对linux的服务器进行性能上数据进行抓取之后,就需要对数据中内容进行分析,看数据库中内容是否存在瓶颈上的问题,在进行获取到的数据的慢查日志,将使 ...
- mysqldumpslow -- 分析慢查询日志
格式:mysqldumpslow [选项] 慢查询日志路径 选项: -s 排序方式,可选值有c(记录次数).t(查询时间).l(锁定时间).r(返回记录).a(平均) -t 显示的记录数 - ...
- mysql分析慢查询日志工具mysqlsla安装
1 配置perlperl -MCPAN -e shell cpan[1]>install Time:HiRescpan[1]>install File::Tempcpan[1]> ...
- MySQL 慢查询日志分析及可视化结果
MySQL 慢查询日志分析及可视化结果 MySQL 慢查询日志分析 pt-query-digest分析慢查询日志 pt-query-digest --report slow.log 报告最近半个小时的 ...
- shell脚本分析mysql慢查询日志(slow log)
使用percona公司的pt-query-digest分析慢查询日志.分析.统计的结果的比較清晰 #!/bin/sh slowlog_path=/root/slow_query_log everysl ...
随机推荐
- Android多级目录树
本例中目录树的菜单数据是从json数据中获取,首先建立一个菜单实体类 MenuTree package com.gao.tree; /** * 菜单树的各级菜单实体类 * * @author tjs ...
- diaowen Maven Webapp
五月 , :: 上午 org.apache.catalina.startup.VersionLoggerListener log INFO: Server version: Apache Tomcat ...
- Gold Balanced Lineup(hash)
http://poj.org/problem?id=3274 ***** #include <stdio.h> #include <iostream> #include < ...
- HDU1043 Eight
题目: 简单介绍一下八数码问题: 在一个3×3的九宫格上,填有1~8八个数字,空余一个位置,例如下图: 1 2 3 4 5 6 7 8 在上图中,由于右下角位置是空的 ...
- BZOJ 4517 组合数+错排
思路: 预处理错排 然后C(n,m)*s[n-m-1]就是答案了 特判n-m-1<0 //By SiriusRen #include <cstdio> using namespace ...
- 关于TJOI2014的一道题——Alice and Bob
B Alice and Bob •输入输出文件: alice.in/alice.out •源文件名: alice.cpp/alice.c/alice.pas • 时间限制: 1s 内存限制: 128M ...
- Activity生命周期(待整理)
1. 定义 有一些方法共同定义生命周期,如下图示:(图片来自于官网文档) 2. onStart()——在Activity即将对用户可见之前调用 (1)Activity启动动画.二维动画在onStart ...
- 【转载】【翻译】JavaScript Scoping and Hoisting--JS作用域和变量提升的探讨
原文链接:http://www.adequatelygood.com/2010/2/JavaScript-Scoping-and-Hoisting 你知道下面的JavaScript代码执行后会aler ...
- Excel的用到的常规的技巧
这几天在做各种发票的报表,好几百的数据当然离不开EXCel,自己又是个白班,就记录下啦! EXCEL 判断某一单元格值是否包含在某一列中 就在Excel的表格中加入这个函数:=IF(ISERROR(V ...
- dubbo之负载均衡
在集群负载均衡时,Dubbo提供了多种均衡策略,缺省为random随机调用. Random LoadBalance 随机,按权重设置随机概率. 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按 ...