一.物理结构

1.磁道,扇区,柱面和磁头数

硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等.每个盘片有两面,都可记录信息.盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息.

在DOS中每扇区是128×2的2次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道.硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面.磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁盘有两个面,每个面都有一个磁头,习惯用磁头号来区分.扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,由这些参数可以得到硬盘的容量,

计算公式为:

存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数

2.簇

“簇”是硬盘上存储数据进行分配的最小单位.当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间,而是占有整个一簇.操作系统视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样.簇的大小可在称为磁盘参数块(BPB)中获取.簇的概念仅适用于数据区.

二.数据结构

格式化好的硬盘,整个磁盘按所记录数据的作用不同可分为五部分:

主引导记录(MBR——Main Boot Record)

操作系统引导记录(OBR——OS Boot Record)

文件分配表(FAT——File Assign Table)

根目录(DIR——Directory)

数据区(DATA)

前5个重要信息在磁盘的外磁道上,原因是外圈周长总大于内圈周长,也即外圈存储密度要小些,可靠性高些.

其中只有主引导扇区是唯一的,其它的随你的分区数的增加而增加.

三.引导扇区(Boot Sector)

定义:通常指设备的第一个扇区,用于加载并转让处理器控制权给操作系统.

包括:主引导扇区、操作系统引导扇区

#####1.主引导扇区

位置:0柱面,0磁头,1扇区(clindyer 0,side 0,sector 1)

包括:主引导记录MBR(Main Boot Record)和分区表DPT(Disk Partition Table).

大小:512字节

其中:MBR 446字节(0000–01BD),DPT 64字节(01BE–01FD),结束标志2字节(55 AA)

功能:MBR通过检查DPT分区信息引导系统跳转至DBR

详情:

(1)主引导记录MBR(MBR)

功能:检查分区表是否正确以及确定哪个分区为引导分区,并在程序结束时把该分区的启动程序(也就是操作系统引导扇区)调入内存加以执行.

注意:MBR是由分区程序(例如DOS的Fdisk.exe)产生的,不同的操作系统可能这个扇区是不尽相同.如果你有这个意向也可以自己去编写一个,只要它能完成前述的任务即可,这也是为什么能实现多系统启动的原因(说句题外话:正因为这个主引导记录容易编写,所以才出现了很多的引导区病毒).

(2)硬盘分区表(DPT)

大小:总共64字节(01BE–01FD)

每个分区占16个字节,所以可以表示四个分区,这也就是为什么一个磁盘的主分区和扩展分区之和总共只能有四个的原因.

详情:

扩展分区的信息位于以上所示的硬盘分区表(DPT)中,而逻辑驱”动器的信息则位于扩展分区的起始扇区,即该分区的起始地址(面/扇区/磁道)所对应的扇区,该扇区中的信息与硬盘主引导扇区的区别是不包含MBR,而16字节的分区信息则表示的是逻辑驱动器的起始和结束地址等.

2.操作系统引导扇区——活动分区主引导扇区(DBR)

位置:通常位于硬盘的0磁道1柱面1扇区(clindyer 0,side 1,sector 1)

(这是对于DOS来说的,对于那些以多重引导方式启动的系统则位于相应的主分区/扩展分区的第一个扇区)

功能:包含机器CMOS等信息(0000–0059),核对该信息并引导指定的系统文件,如NTLDR等.

介绍:是操作系统可直接访问的第一个扇区,它也包括一个引导程序和一个被称为BPB(BIOS ParameterBlock)的本分区参数记录表.

详情:其实每个逻辑分区都有一个OBR,其参数视分区的大小、操作系统的类别而有所不同.引导程序的主要任务是判断本分区根目录前两个文件是否为操作系统的引导文件(例如MSDOS或者起源于MSDOS的Win9x/Me的IO.SYS和MSDOS.SYS).如是,就把第一个文件读入内存,并把控制权交予该文件.BPB参数块记录着本分区的起始扇区、结束扇区、文件存储格式、硬盘介质描述符、根目录大小、FAT个数、分配单元(Allocation Unit,以前也称之为簇)的大小等重要参数.OBR由高级格式化程序产生(例如DOS的Format).

http://hopehook.com/2015/05/08/HardDisk/

硬盘是现在计算机上最常用的存储器之一。我们都知道,计算机之所以神奇,是因为它具有高速分析处理数据的能力。而这些数据都以文件的形式存储在硬盘里。不过,计算机可不像人那么聪明。在读取相应的文件时,你必须要给出相应的规则。这就是分区概念。

分区从实质上说就是对硬盘的一种格式化。当我们创建分区时,就已经设置好了硬盘的各项物理参数,指定了硬盘主引导记录(即Master Boot Record,一般简称为MBR)和引导记录备份的存放位置。而对于文件系统以及其他操作系统管理硬盘所需要的信息则是通过以后的高级格式化,即Format命令来实现。面、磁道和扇区硬盘分区后,将会被划分为面(Side)、磁道(Track)和扇区(Sector)。需要注意的是,这些只是个虚拟的概念,并不是真正在硬盘上划轨道。

先从面说起,硬盘一般是由一片或几片圆形薄膜叠加而成。我们所说,每个圆形薄膜都有两个“面”,这两个面都是用来存储数据的。按照面的多少,依次称为0面、1面、2面……由于每个面都专有一个读写磁头,也常用0头(head)、1头……称之。按照硬盘容量和规格的不同,硬盘面数(或头数)也不一定相同,少的只有2面,多的可达数十面。各面上磁道号相同的磁道合起来,称为一个柱面(Cylinder)。

上面我们提到了磁道的概念。那么究竟何为磁道呢?由于磁盘是旋转的,则连续写入的数据是排列在一个圆周上的。我们称这样的圆周为一个磁道。如果读写磁头沿着圆形薄膜的半径方向移动一段距离,以后写入的数据又排列在另外一个磁道上。根据硬盘规格的不同,磁道数可以从几百到数千不等;一个磁道上可以容纳数KB的数据,而主机读写时往往并不需要一次读写那么多,于是,磁道又被划分成若干段,每段称为一个扇区。一个扇区一般存放512字节的数据。扇区也需要编号,同一磁道中的扇区,分别称为1扇区,2扇区……

计算机对硬盘的读写,处于效率的考虑,是以扇区为基本单位的。即使计算机只需要硬盘上存储的某个字节,也必须一次把这个字节所在的扇区中的512字节全部读入内存,再使用所需的那个字节。不过,在上文中我们也提到,硬盘上面、磁道、扇区的划分表面上是看不到任何痕迹的,虽然磁头可以根据某个磁道的应有半径来对准这个磁道,但怎样才能在首尾相连的一圈扇区中找出所需要的某一扇区呢?原来,每个扇区并不仅仅由512个字节组成的,在这些由计算机存取的数据的前、后两端,都另有一些特定的数据,这些数据构成了扇区的界限标志,标志中含有扇区的编号和其他信息。计算机就凭借着这些标志来识别扇区。硬盘的数据结构在上文中,我们谈了数据在硬盘中的存储的一般原理。为了能更深入地了解硬盘,我们还必须对硬盘的数据结构有个简单的了解。硬盘上的数据按照其不同的特点和作用大致可分为5部分:MBR区、DBR区、FAT区、DIR区和DATA区。

我们来分别介绍一下:

1、MBR区

MBR(Main Boot Record主引导记录区)位于整个硬盘的0磁道0柱面1扇区。不过,在总共512字节的主引导扇区中,MBR只占用了其中的446个字节,另外的64个字节交给了DPT(Disk Partition Table硬盘分区表),最后两个字节“55,AA”是分区的结束标志。这个整体构成了硬盘的主引导扇区。

主引导记录中包含了硬盘的一系列参数和一段引导程序。其中的硬盘引导程序的主要作用是检查分区表是否正确并且在系统硬件完成自检以后引导具有激活标志的分区上的操作系统,并将控制权交给启动程序。MBR是由分区程序(如Fdisk.exe)所产生的,它不依赖任何操作系统,而且硬盘引导程序也是可以改变的,从而实现多系统共存。

下面,我们以一个实例让大家更直观地来了解主引导记录:

例:80 01 01 00 0B FE BF FC 3F 00 00 00 7E 86 BB 00在这里我们可以看到,最前面的“80”是一个分区的激活标志,表示系统可引导;“01 01 00”表示分区开始的磁头号为01,开始的扇区号为01,开始的柱面号为00;“0B”表示分区的系统类型是FAT32,其他比较常用的有04(FAT16)、07(NTFS);“FE BF FC”表示分区结束的磁头号为254,分区结束的扇区号为63、分区结束的柱面号为764;“3F 00 00 00”表示首扇区的相对扇区号为63;“7E 86 BB 00”表示总扇区数为12289622。

2、DBR区

DBR(Dos Boot Record)是操作系统引导记录区的意思。它通常位于硬盘的0磁道1柱面1扇区,是操作系统可以直接访问的第一个扇区,它包括一个引导程序和一个被称为BPB(Bios Parameter Block)的本分区参数记录表。引导程序的主要任务是当MBR将系统控制权交给它时,判断本分区跟目录前两个文件是不是操作系统的引导文件(以DOS为例,即是Io.sys和Msdos.sys)。如果确定存在,就把它读入内存,并把控制权交给该文件。BPB参数块记录着本分区的起始扇区、结束扇区、文件存储格式、硬盘介质描述符、根目录大小、FAT个数,分配单元的大小等重要参数。DBR是由高级格式化程序(即Format.com等程序)所产生的。

3、FAT区

在DBR之后的是我们比较熟悉的FAT(File Allocation Table文件分配表)区。在解释文件分配表的概念之前,我们先来谈谈簇(Cluster)的概念。文件占用磁盘空间时,基本单位不是字节而是簇。一般情况下,软盘每簇是1个扇区,硬盘每簇的扇区数与硬盘的总容量大小有关,可能是4、8、16、32、64……同一个文件的数据并不一定完整地存放在磁盘的一个连续的区域内,而往往会分成若干段,像一条链子一样存放。这种存储方式称为文件的链式存储。由于硬盘上保存着段与段之间的连接信息(即FAT),操作系统在读取文件时,总是能够准确地找到各段的位置并正确读出。为了实现文件的链式存储,硬盘上必须准确地记录哪些簇已经被文件占用,还必须为每个已经占用的簇指明存储后继内容的下一个簇的簇号。对一个文件的最后一簇,则要指明本簇无后继簇。这些都是由FAT表来保存的,表中有很多表项,每项记录一个簇的信息。由于FAT对于文件管理的重要性,所以FAT有一个备份,即在原FAT的后面再建一个同样的FAT。初形成的FAT中所有项都标明为“未占用”,但如果磁盘有局部损坏,那么格式化程序会检测出损坏的簇,在相应的项中标为“坏簇”,以后存文件时就不会再使用这个簇了。FAT的项数与硬盘上的总簇数相当,每一项占用的字节数也要与总簇数相适应,因为其中需要存放簇号。FAT的格式有多种,最为常见的是FAT16和FAT32。

4、DIR区

DIR(Directory)是根目录区,紧接着第二FAT表(即备份的FAT表)之后,记录着根目录下每个文件(目录)的起始单元,文件的属性等。定位文件位置时,操作系统根据DIR中的起始单元,结合FAT表就可以知道文件在硬盘中的具体位置和大小了。

5、数据(DATA)区

数据区是真正意义上的数据存储的地方,位于DIR区之后,占据硬盘上的大部分数据空间。

一、硬盘的物理结构:

硬盘存储数据是根据电、磁转换原理实现的。硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。

硬盘物理结构

硬盘工作时,盘片以设计转速高速旋转,设置在盘片表面的磁头则在电路控制下径向移动到指定位置然后将数据存储或读取出来。当系统向硬盘写入数据时,磁头中“写数据”电流产生磁场使盘片表面磁性物质状态发生改变,并在写电流磁场消失后仍能保持,这样数据就存储下来了;当系统从硬盘中读数据时,磁头经过盘片指定区域,盘片表面磁场使磁头产生感应电流或线圈阻抗产生变化,经相关电路处理后还原成数据。因此只要能将盘片表面处理得更平滑、磁头设计得更精密以及尽量提高盘片旋转速度,就能造出容量更大、读写数据速度更快的硬盘。这是因为盘片表面处理越平、转速越快就能越使磁头离盘片表面越近,提高读、写灵敏度和速度;磁头设计越小越精密就能使磁头在盘片上占用空间越小,使磁头在一张盘片上建立更多的磁道以存储更多的数据。

二、硬盘的逻辑结构:

硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。如果有N个盘片。就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。)每个盘片的划分规则通常是一样的。这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2……每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3……形成Cylinders×Heads×Sector个扇区。这三个参数即是硬盘的物理参数。我们下面的很多实践需要深刻理解这三个参数的意义。

硬盘存储数据是根据电、磁转换原理实现的。硬盘由一个或几个表面镀有磁性物质的金属或玻璃等物质盘片以及盘片两面所安装的磁头和相应的控制电路组成(图1),其中盘片和磁头密封在无尘的金属壳中。

三、磁盘引导原理:

3.1 MBR(master boot record)扇区:

计算机在按下power键以后,开始执行主板bios程序。进行完一系列检测和配置以后。开始按bios中设定的系统引导顺序引导系统。假定现在是硬盘。Bios执行完自己的程序后如何把执行权交给硬盘呢。交给硬盘后又执行存储在哪里的程序呢。其实,称为mbr的一段代码起着举足轻重的作用。MBR(master boot record),即主引导记录,有时也称主引导扇区。位于整个硬盘的0柱面0磁头1扇区(可以看作是硬盘的第一个扇区),bios在执行自己固有的程序以后就会jump到mbr中的第一条指令。将系统的控制权交由mbr来执行。在总共512byte的主引导记录中,MBR的引导程序占了其中的前446个字节(偏移0H~偏移1BDH),随后的64个字节(偏移1BEH~偏移1FDH)为DPT(Disk PartitionTable,硬盘分区表),最后的两个字节“55 AA”(偏移1FEH~偏移1FFH)是分区有效结束标志。

MBR不随操作系统的不同而不同,意即不同的操作系统可能会存在相同的MBR,即使不同,MBR也不会夹带操作系统的性质。具有公共引导的特性。

我们来分析一段mbr。下面是用winhex查看的一块希捷120GB硬盘的mbr。

MBR扇区代码

你的硬盘的MBR引导代码可能并非这样。不过即使不同,所执行的功能大体是一样的。这里找wowocock关于磁盘mbr的反编译,已加了详细的注释,感兴趣可以细细研究一下。

我们看DPT部分。操作系统为了便于用户对磁盘的管理。加入了磁盘分区的概念。即将一块磁盘逻辑划分为几块。磁盘分区数目的多少只受限于C~Z的英文字母的数目,在上图DPT共64个字节中如何表示多个分区的属性呢?microsoft通过链接的方法解决了这个问题。在DPT共64个字节中,以16个字节为分区表项单位描述一个分区的属性。也就是说,第一个分区表项描述一个分区的属性,一般为基本分区。第二个分区表项描述除基本分区外的其余空间,一般而言,就是我们所说的扩展分区。这部分的大体说明见表1。

DPT代码分析

注:上表中的超过1字节的数据都以实际数据显示,就是按高位到地位的方式显示。存储时是按低位到高位存储的。两者表现不同,请仔细看清楚。以后出现的表,图均同。

也可以在winhex中看到这些参数的意义:

winhex查看参数

说明:每个分区表项占用16个字节,假定偏移地址从0开始。如图3的分区表项3。分区表项4同分区表项3。

1、0H偏移为活动分区是否标志,只能选00H和80H。80H为活动,00H为非活动。其余值对microsoft而言为非法值。

2、重新说明一下(这个非常重要):大于1个字节的数被以低字节在前的存储格式格式(little endian format)或称反字节顺序保存下来。低字节在前的格式是一种保存数的方法,这样,最低位的字节最先出现在十六进制数符号中。例如,相对扇区数字段的值0x3F000000的低字节在前表示为0x0000003F。这个低字节在前的格式数的十进制数为63。

3、系统在分区时,各分区都不允许跨柱面,即均以柱面为单位,这就是通常所说的分区粒度。有时候我们分区是输入分区的大小为7000M,分出来却是6997M,就是这个原因。偏移2H和偏移6H的扇区和柱面参数中,扇区占6位(bit),柱面占10位(bit),以偏移6H为例,其低6位用作扇区数的二进制表示。其高两位做柱面数10位中的高两位,偏移7H组成的8位做柱面数10位中的低8位。由此可知,实际上用这种方式表示的分区容量是有限的,柱面和磁头从0开始编号,扇区从1开始编号,所以最多只能表示1024个柱面×63个扇区×256个磁头×512byte=8455716864byte。即通常的8.4GB(实际上应该是7.8GB左右)限制。实际上磁头数通常只用到255个(由汇编语言的寻址寄存器决定),即使把这3个字节按线性寻址,依然力不从心。在后来的操作系统中,超过8.4GB的分区其实已经不通过C/H/S的方式寻址了。而是通过偏移CH~偏移FH共4个字节32位线性扇区地址来表示分区所占用的扇区总数。可知通过4个字节可以表示2^32个扇区,即2TB=2048GB,目前对于大多数计算机而言,这已经是个天文数字了。在未超过8.4GB的分区上,C/H/S的表示方法和线性扇区的表示方法所表示的分区大小是一致的。也就是说,两种表示方法是协调的。即使不协调,也以线性寻址为准。(可能在某些系统中会提示出错)。超过8.4GB的分区结束C/H/S一般填充为FEH FFH FFH。即C/H/S所能表示的最大值。有时候也会用柱面对1024的模来填充。不过这几个字节是什么其实都无关紧要了。

虽然现在的系统均采用线性寻址的方式来处理分区的大小。但不可跨柱面的原则依然没变。本分区的扇区总数加上与前一分区之间的保留扇区数目依然必须是柱面容量的整数倍。(保留扇区中的第一个扇区就是存放分区表的MBR或虚拟MBR的扇区,分区的扇区总数在线性表示方式上是不计入保留扇区的。如果是第一个分区,保留扇区是本分区前的所有扇区。

附:分区表类型标志如图4

分区表类型标志

3.2扩展分区

扩展分区中的每个逻辑驱动器都存在一个类似于MBR的扩展引导记录(Extended Boot Record,EBR),也有人称之为虚拟mbr或扩展mbr,意思是一样的。扩展引导记录包括一个扩展分区表和该扇区的标签。扩展引导记录将记录只包含扩展分区中每个逻辑驱动器的第一个柱面的第一面的信息。一个逻辑驱动器中的引导扇区一般位于相对扇区32或63。但是,如果磁盘上没有扩展分区,那么就不会有扩展引导记录和逻辑驱动器。第一个逻辑驱动器的扩展分区表中的第一项指向它自身的引导扇区。第二项指向下一个逻辑驱动器的EBR。如果不存在进一步的逻辑驱动器,第二项就不会使用,而且被记录成一系列零。如果有附加的逻辑驱动器,那么第二个逻辑驱动器的扩展分区表的第一项会指向它本身的引导扇区。第二个逻辑驱动器的扩展分区表的第二项指向下一个逻辑驱动器的EBR。扩展分区表的第三项和第四项永远都不会被使用。

通过一幅4分区的磁盘结构图可以看到磁盘的大致组织形式。如图5

关于扩展分区,如图6所示,扩展分区中逻辑驱动器的扩展引导记录是一个连接表。该图显示了一个扩展分区上的三个逻辑驱动器,说明了前面的逻辑驱动器和最后一个逻辑驱动器之间在扩展分区表中的差异。

除了扩展分区上最后一个逻辑驱动器外,表2中所描述的扩展分区表的格式在每个逻辑驱动器中都是重复的:第一个项标识了逻辑驱动器本身的引导扇区,第二个项标识了下一个逻辑驱动器的EBR。最后一个逻辑驱动器的扩展分区表只会列出它本身的分区项。最后一个扩展分区表的第二个项到第四个项被使用。

扩展分区表项中的相对扇区数字段所显示的是从扩展分区开始到逻辑驱动器中第一个扇区的位移的字节数。总扇区数字段中的数是指组成该逻辑驱动器的扇区数目。总扇区数字段的值等于从扩展分区表项所定义的引导扇区到逻辑驱动器末尾的扇区数。

有时候在磁盘的末尾会有剩余空间,剩余空间是什么呢?我们前面说到,分区是以1柱面的容量为分区粒度的,那么如果磁盘总空间不是整数个柱面的话,不够一个柱面的剩下的空间就是剩余空间了,这部分空间并不参与分区,所以一般无法利用。照道理说,磁盘的物理模式决定了磁盘的总容量就应该是整数个柱面的容量,为什么会有不够一个柱面的空间呢。在我的理解看来,本来现在的磁盘为了更大的利用空间,一般在物理上并不是按照外围的扇区大于里圈的扇区这种管理方式,只是为了与操作系统兼容而抽象出来CHS。可能其实际空间容量不一定正好为整数个柱面的容量。

转载声明 原文链接

http://hopehook.com/2015/05/08/DiskMbr/

硬盘的结构和介绍,硬盘MBR详细介绍(超详细彩图)的更多相关文章

  1. [刘阳Java]_斗胆介绍一下Eclipse快捷键大全[超详细]_第6讲

    斗胆让我在这里介绍一下Eclipse快捷键有哪些 ctrl+shirt+r 打开资源 这组快捷键可以让你开打Eclipse工作区中任何一个文件,你只需要输入你想查找的文件名字即可,而且绝对支持模糊检索 ...

  2. VMwear安装Centos7超详细过程

    本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定的参考价值,感兴趣的小伙伴们可以参考一下 1.软硬件准备 软件:推荐使用VMwear,我用的是VMwear 12 镜像:Ce ...

  3. 非常详细的 (VMware安装Centos7超详细过程)

    本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定的参考价值,感兴趣的小伙伴们可以参考一下 1.软硬件准备 软件:推荐使用VMwear,我用的是VMwear 12 镜像:Ce ...

  4. VMware安装Centos7超详细教程

    本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定安装参考价值 在没有运维的情况下,很多时候测试需要自己搭建测试环境,而测试环境又分为QA环境,自动化测试环境,uat环境,以 ...

  5. VMware安装Centos7超详细过程

    本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定的参考价值,感兴趣的小伙伴们可以参考一下 一.软硬件准备 软件:推荐使用VMwear,我用的是VMwear 12 镜像:Ce ...

  6. VMware15安装Centos7超详细过程

    本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定的参考价值,感兴趣的小伙伴们可以参考一下 1.软硬件准备 软件:推荐使用VMwear15,我用的是VMwear 15 镜像: ...

  7. 【转载】硬盘MBR详细介绍

    原文地址:http://blog.chinaunix.net/uid-15007890-id-106892.html 硬盘MBR详细介绍      硬盘是现在计算机上最常用的存储器之一.我们都知道,计 ...

  8. 【转】硬盘分区知识介绍(MBR)

    转自:http://www.blogjava.net/galaxyp/archive/2010/04/25/319344.html 硬盘是现在计算机上最常用的存储器之一.我们都知道,计算机之所以神奇, ...

  9. Linux硬盘的检测--smartctl详细介绍

    概述  随着硬盘容量.速度的快速发展,硬盘的可靠性问题越来越重要,今天的单块硬盘存储容量可轻松达到1TB,硬盘损坏带来的影响非常巨大.不同的文件系统(xfs,reiserfs,ext3)都有自己的检测 ...

  10. (转)硬盘结构,主引导记录MBR,硬盘分区表DPT,主分区、扩展分区和逻辑分区,电脑启动过程

    硬盘结构硬盘有很多盘片组成,每个盘片的每个面都有一个读写磁头.如果有N个盘片.就有2N个面,对应2N个磁头(Heads),从0.1.2开始编号.每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电 ...

随机推荐

  1. 算法 Tricks(五)—— 二进制逻辑运算

    int flag = 1; while ( (data & flag) == 0 ) flag <<= 1; 判断某数的二进制形式的某位(第 k 位)是否为 1,将其与 2k 相与 ...

  2. 华为云软件开发云VS开发痛点=?

    在软件开发的过程中,是不是总会遇到这些问题: 搭建一个开发环境,用了九牛二虎之力,悲催的是竟然用不了…… 团队同事突然出差,他写的代码出现问题,我却不会改…… 提升软件件质量靠代码,交叉看.找大拿,简 ...

  3. Js跨域小总结

    教程 以下的例子包含的文件均为为http://www.a.com/a.html.http://www.a.com/c.html 与http://www.b.com/b.html ,要做的都是从a.ht ...

  4. jQuery插件开发小总结

    另一篇 jQuery插件开发通常有3种方式 通过$.extend()来扩展jQuery 通过$.fn 向jQuery添加新的方法 通过$.widget()应用jQuery UI的部件工厂方式创建 通常 ...

  5. PhoneGap Html5 App 横竖屏切换自动退出

    将以下内容添加到 AndroidManifest.xml 文件的 activity 标签中: android:configChanges="orientation|keyboardHidde ...

  6. C# .NET数据库操作

    C# .NET更智能的数据库操作的封装完整版(重构)   前述: 第一次发表文章,不过是对数据库简单的封装,主要是阐述下思路.那么在上篇文章,在大家的指导下和提出意见,并自己对代码进行了思考.在这两天 ...

  7. Android 获取imei号码,获取手机型号和系统版本号

    在AndroidManifest.xml文件中要添加 <uses-permission android:name="android.permission.READ_PHONE_STAT ...

  8. YII2.0多条件查询升级版

    $query = self::find()->andFilterWhere(['v_type' => $v_type])->andFilterWhere(['like', 'a_na ...

  9. 开源|LightGBM:三天内收获GitHub 1000+ 星

    原创 2017-01-05 LightGBM 微软研究院AI头条 [导读]不久前微软DMTK(分布式机器学习工具包)团队在GitHub上开源了性能超越其他boosting工具的LightGBM,在三天 ...

  10. 【甘道夫】基于Mahout0.9+CDH5.2执行分布式ItemCF推荐算法

    环境: hadoop-2.5.0-cdh5.2.0 mahout-0.9-cdh5.2.0 引言 尽管Mahout已经宣布不再继续基于Mapreduce开发,迁移到Spark.可是实际面临的情况是公司 ...