【题目链接】 http://poj.org/problem?id=2186

【题目大意】

  给出一张有向图,问能被所有点到达的点的数量

【题解】

  我们发现能成为答案的,只有拓扑序最后的SCC中的所有点,
  那么我们从其中一个点开始沿反图dfs,如果能访问到全图,
  则答案为其所在SCC的大小,否则为0.

【代码】

#include <cstdio>
#include <algorithm>
#include <vector>
#include <cstring>
using namespace std;
const int MAX_V=10000;
int V; //顶点数
vector<int> G[MAX_V]; //图的邻接表表示
vector<int> rG[MAX_V]; //反向图
vector<int> vs; //后序遍历
bool used[MAX_V];
int cmp[MAX_V]; //所属强连通分量的拓扑序
void add_edge(int from,int to){
G[from].push_back(to);
rG[to].push_back(from);
}
void dfs(int v){
used[v]=1;
for(int i=0;i<G[v].size();i++){
if(!used[G[v][i]])dfs(G[v][i]);
}vs.push_back(v);
}
void rdfs(int v,int k){
used[v]=1;
cmp[v]=k;
for(int i=0;i<rG[v].size();i++){
if(!used[rG[v][i]])rdfs(rG[v][i],k);
}
}
int scc(){
memset(used,0,sizeof(used));
vs.clear();
for(int v=0;v<V;v++){if(!used[v])dfs(v);}
memset(used,0,sizeof(used));
int k=0;
for(int i=vs.size()-1;i>=0;i--){
if(!used[vs[i]])rdfs(vs[i],k++);
}return k;
}
const int MAX_M=50000;
int N,M;
int A[MAX_M],B[MAX_M];
void solve(){
V=N;
for(int i=0;i<M;i++){
add_edge(A[i]-1,B[i]-1);
}int n=scc();
int u=0,num=0;
for(int v=0;v<V;v++){
if(cmp[v]==n-1){
u=v;
num++;
}
}memset(used,0,sizeof(used));
rdfs(u,0);
for(int v=0;v<V;v++){
if(!used[v]){
num=0;
break;
}
}printf("%d\n",num);
}
int main(){
while(~scanf("%d%d",&N,&M)){
for(int i=0;i<M;i++)scanf("%d%d",&A[i],&B[i]);
solve();
}return 0;
}

POJ 2186 Popular Cows(强连通分量)的更多相关文章

  1. poj 2186 Popular Cows (强连通分量+缩点)

    http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

  2. POJ 2186 Popular Cows --强连通分量

    题意:给定一个有向图,问有多少个点由任意顶点出发都能达到. 分析:首先,在一个有向无环图中,能被所有点达到点,出度一定是0. 先求出所有的强连通分支,然后把每个强连通分支收缩成一个点,重新建图,这样, ...

  3. POJ 2186 Popular Cows 强连通分量模板

    题意 强连通分量,找独立的块 强连通分量裸题 #include <cstdio> #include <cstdlib> #include <cstring> #in ...

  4. POJ 2186 Popular Cows(强连通分量缩点)

    题目链接:http://poj.org/problem?id=2186 题目意思大概是:给定N(N<=10000)个点和M(M<=50000)条有向边,求有多少个“受欢迎的点”.所谓的“受 ...

  5. 强连通分量分解 Kosaraju算法 (poj 2186 Popular Cows)

    poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求 ...

  6. poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】

    题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Sub ...

  7. POJ 2186 Popular Cows (强联通)

    id=2186">http://poj.org/problem? id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 655 ...

  8. tarjan缩点练习 洛谷P3387 【模板】缩点+poj 2186 Popular Cows

    缩点练习 洛谷 P3387 [模板]缩点 缩点 解题思路: 都说是模板了...先缩点把有环图转换成DAG 然后拓扑排序即可 #include <bits/stdc++.h> using n ...

  9. [强连通分量] POJ 2186 Popular Cows

    Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 31815   Accepted: 12927 De ...

  10. POJ 2186 Popular Cows(强连通分量Kosaraju)

    http://poj.org/problem?id=2186 题意: 一个有向图,求出点的个数(任意点可达). 思路: Kosaraju算法的第一次dfs是后序遍历,而第二次遍历时遍历它的反向图,从标 ...

随机推荐

  1. 【BZOJ 3195 】[Jxoi2012]奇怪的道路 装压dp

    受惯性思维的影响自动把二进制状态认为是连与不连......... 我们这里二进制状态表示的是奇偶,这样的话我们f[i][j][k]表示的就是前i个城市用了j个边他前k个城市的奇偶状态,然后想想怎么转移 ...

  2. 版本7以上IE以文件夹视图方式打开FTP的解决

    一.问题的提出 版本7以上IE浏览器打开FTP时只出现列表 二.问题的解决 设置ie浏览器选项即可,以ie9为例,设置步骤如下: 1.启动ie,点击设置按钮,弹出菜单选择internet选项命令: 2 ...

  3. 怎样在WPS上实现代码语法高亮

    转载自:http://www.cnblogs.com/yuphone/archive/2009/12/13/1622901.html 小時不識月 Stupid & Hungry 本文列举两种可 ...

  4. 自己实现的JDBC工具类

    最近做了个后台应用程序,刚开始用Spring+iBatis来做的,后来因为种种原因,不让用Spring.iBatis以及一些开源的工具包.   于是用JDBC重写了原来的Service实现,项目做完了 ...

  5. POJ 1320 Street Numbers 解佩尔方程

    传送门 Street Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2529   Accepted: 140 ...

  6. 最适合初学者学习的idea教程

    https://github.com/judasn/IntelliJ-IDEA-Tutorial

  7. CentOS 7 单用户模式修改root密码

    1)在启动grub菜单,选择编辑选项启动 2)按键盘e键,来进入编辑界面 3)找到Linux 16的那一行,将ro改为rw init=/sysroot/bin/sh 4)现在按下Control+x,使 ...

  8. php使用curl模拟登录带验证码的网站

    需求是这样的,需要登录带验证码的网站,获取数据,但是不可能人为一直去记录数据,想通过自动采集的方式进行,如下是试验出来的结果代码!有需要的可以参考下! <?php namespace Home\ ...

  9. [Leetcode Week10]Minimum Time Difference

    Minimum Time Difference 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/minimum-time-difference/desc ...

  10. Swift中的类型属性(静态变量)

    http://blog.haohtml.com/archives/15098 Swift中的类型属性(静态变量) Posted on 2014/06/13 类型属性语法 在 C 或 Objective ...