深刻感受到自己的水平和机房里的其他人相差甚远,他们都是随手秒这个题的...

$n$很小,考虑状压DP

当一个序列在某个位置取到最大前缀和后,意味着如果把后面的数抽出来单独成序列,那么它的每个前缀和都$\leq0$,要不然就可以取到更大的前缀和了

令$s_i$表示状态为$i$的数的和,$f_i$表示选状态为$i$的数且最大前缀和$=s_i$的方案数,$g_i$表示选状态为$i$的数且每个前缀和都$\leq0$的方案数,那么答案就是$\sum\limits_is_if_ig_{mx-i}$

如果$s_i\gt0$,那么我们在$i$这个状态代表的序列前面加任何一个数,新的序列的最大前缀和肯定是总和,所以我们有转移$f_{j\cup i}\gets f_i(i\cap j=\varnothing)$

如果$s_i\leq0$,那么我们在$i$这个状态代表的序列末尾删除一个数得到的序列仍然满足条件,所以我们有转移$g_i\gets g_{i-j}(i\cap j\ne\varnothing)$

总时间复杂度$O(n2^n)$

#include<stdio.h>
const int maxn=1048576,mod=998244353;
typedef long long ll;
int a[20],s[maxn],f[maxn],g[maxn];
void inc(int&a,int b){(a+=b)%=mod;}
int main(){
	int n,i,j,mx,ans;
	scanf("%d",&n);
	for(i=0;i<n;i++)scanf("%d",a+i);
	mx=1<<n;
	for(i=0;i<mx;i++){
		for(j=0;j<n;j++){
			if(i>>j&1)s[i]+=a[j];
		}
	}
	g[0]=1;
	for(i=0;i<mx;i++){
		if(s[i]<=0){
			for(j=0;j<n;j++){
				if(i>>j&1)inc(g[i],g[i^(1<<j)]);
			}
		}
	}
	for(i=0;i<n;i++)f[1<<i]=1;
	for(i=0;i<mx;i++){
		if(s[i]>0){
			for(j=0;j<n;j++){
				if(~i>>j&1)inc(f[i^(1<<j)],f[i]);
			}
		}
	}
	ans=0;
	for(i=0;i<mx;i++)inc(ans,s[i]*(ll)f[i]%mod*(ll)g[(mx-1)^i]%mod);
	inc(ans,mod);
	printf("%d",ans);
}

[LOJ6433]最大前缀和的更多相关文章

  1. 「PKUWC2018/PKUSC2018」试题选做

    「PKUWC2018/PKUSC2018」试题选做 最近还没想好报THUSC还是PKUSC,THU发我的三类约(再来一瓶)不知道要不要用,甚至不知道营还办不办,协议还有没有用.所以这些事情就暂时先不管 ...

  2. 【LOJ6433】【PKUSC2018】最大前缀和

    [LOJ6433][PKUSC2018]最大前缀和 题面 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做这个题,于是小 C ...

  3. LOJ6433 [PKUSC2018] 最大前缀和 【状压DP】

    题目分析: 容易想到若集合$S$为前缀时,$S$外的所有元素的排列的前缀是小于$0$的,DP可以做到,令排列前缀个数小于0的是g[S]. 令f[S]表示$S$是前缀,转移可以通过在前面插入元素完成. ...

  4. 【PKUSC2018】【loj6433】最大前缀和 状压dp

    这题吼啊... 然而还是想了$2h$,写了$1h$. 我们发现一个性质:若一个序列$p$能作为前缀和,那么在序列$p$中,包含序列$p$最后一个数的所有子序列必然都是非负的. 那么,我们 令$f[i] ...

  5. [LOJ6433] [PKUSC2018] 最大前缀和

    题目链接 LOJ:https://loj.ac/problem/6433 Solution 注意到最大前缀要满足什么性质,假设序列\(a[1..n]\)的最大前缀是\(s_x\),那么显然要满足所有\ ...

  6. [LOJ6433][PKUSC2018]最大前缀和:状压DP

    分析 我们让每个数列在第一个取到最大前缀和的位置被统计到. 假设一个数列在\(pos\)处第一次取到最大前缀和,分析性质,有: 下标在\([1,pos]\)之间的数形成的数列的每个后缀和(不包括整个数 ...

  7. LOJ#6433. 「PKUSC2018」最大前缀和 状压dp

    原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...

  8. HDU1671——前缀树的一点感触

    题目http://acm.hdu.edu.cn/showproblem.php?pid=1671 题目本身不难,一棵前缀树OK,但是前两次提交都没有成功. 第一次Memory Limit Exceed ...

  9. 【手记】注意BinaryWriter写string的小坑——会在string前加上长度前缀length-prefixed

    之前以为BinaryWriter写string会严格按构造时指定的编码(不指定则是无BOM的UTF8)写入string的二进制,如下面的代码: //将字符串"a"写入流,再拿到流的 ...

随机推荐

  1. 2015年网易校招Java开发工程师(技术架构)在线笔试题

    1.  程序和进程的本质区别是? A.在外存和内存存储 B.非顺序和顺序执行机器指令 C.独占使用和分时使用计算机资源 D.静态和动态特征 参考答案分析: 进程与应用程序的区别: 进程(Process ...

  2. 如何把SSL公钥和私钥转化为PFX格式

    1.登陆   https://myssl.com/cert_convert.html 2.原格式选择为 “PEM”,目标格式选择为 “PKCS12” 3.上传cer到 ”证书文件“,上传key到 ”私 ...

  3. Redis(1) 初识Redis

    redis介绍: Redis是一个开源(BSD许可)的内存数据结构存储,用作数据库,缓存和消息代理.它支持数据结构,如字符串(String),哈希(Hash),列表(List),集合(Set),具有范 ...

  4. CentOS 6.5 Linux 安装 openoffice

    资源准备: Apache_OpenOffice_4.1.4_Linux_x86-64_install-rpm_zh-CN.tar.gz 编译安装: 本人资源包放在 /opt/moudles 中, 解压 ...

  5. Nginx的client_header_buffer_size和large_client_header_buffers学习

    之前看到有人写的一篇关于nginx配置中large_client_header_buffers的问题排查的文章,其中提到: large_client_header_buffers 虽然也可以在serv ...

  6. python并发进程

    1 引言 2 创建进程 2.1 通过定义函数的方式创建进程 2.2 通过定义类的方式创建进程 3 Process中常用属性和方法 3.1 守护进程:daemon 3.2 进程终结于存活检查:termi ...

  7. Android 性能优化 - 详解内存优化的来龙去脉

    前言 APP内存的使用,是评价一款应用性能高低的一个重要指标.虽然现在智能手机的内存越来越大,但是一个好的应用应该将效率发挥到极致,精益求精. 这一篇中我们将着重介绍Android的内存优化.本文的篇 ...

  8. 【洛谷 P1666】 前缀单词 (Trie)

    题目链接 考试时暴搜50分...其实看到"单词","前缀"这种字眼时就要想到\(Trie\)的,哎,我太蒻了. 以一个虚点为根,建一棵\(Trie\),然后\( ...

  9. [bzoj1717][Usaco2006 Dec]Milk Patterns 产奶的模式——后缀数组

    Brief Description 给定一个字符串,求至少出现k次的最长重复子串. Algorithm Design 先二分答案,然后将后缀分成若干组.判断有没有一个组的后缀个数不小于k.如果有,那么 ...

  10. C# 反射 名称不区分大小写

    一 Type type = Type.GetType(className,false,true); //第一个是“类型的全名”,第二个参数:找不到时触发异常,第三个参数:寻找的时候是否忽略大小写 二 ...