Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 509  Solved: 284
[Submit][Status][Discuss]

Description

给定n个正整数a1,a2,…,an,求

的值(答案模10^9+7)。

Input

第一行一个正整数n。
接下来n行,每行一个正整数,分别为a1,a2,…,an。

Output

仅一行答案。

Sample Input

3
6
10
15

Sample Output

1595

HINT

1<=n<=10^5,1<=ai<=10^7。共3组数据。

Source

 
还是喜欢数论题hhhh,至少不用想那么久。。。。
首先φ是积性函数,这就提示我们可以质因数分解。
我们只要把这个函数在每个质因子下的答案算出来然后都乘起来就行了。
于是现在的问题就变成了当a[1],a[2],,,,a[n]在质数p上的次数分别为 b[1],b[2],,,,b[n]时我们如何求出答案。
 
我一开始想了个比较zz的做法,暴力大背包,,,,dp[i]表示指数和为i的有多少种方法凑到,然后这个质因子的答案
就是1+dp[1]*(p-1)+dp[2]*p*(p-1).......
 
虽然我毒奶一口随机数据的话这个肯定是能过的,,,,然而出题人不可能这么良心的。。。。
一旦有某个质因子在所有数中出现的次数和很大很大那么我这个算法就gg了。。。
 
只能另寻方法。。。
 
最初始的计算某个质因子下答案的式子是:ans=∑φ(p^(c[1]+c[2]+...c[n]))   ,其中0<=c[i]<=b[i]。
然后发现这个也是可以像分解质因数一样合成括号的。
上式=1+ [(p-1)/p]*(π(1+p+p^2+,,,+p^b[i])-1)
 
注意只有当x==0时p^x不用乘(p-1)/p得到φ(p^x)。
 
#include<bits/stdc++.h>
#define ll long long
#define maxn 100005
#define maxm 10000000
#define ha 1000000007
#define pb push_back
using namespace std;
vector<int> g[maxn*];
//g[i]存第i个出现的质因子的指数集合
int cnt=,n,m,dy[maxm+];
int ans=,now,mx[maxn*];
int mul[maxn]; inline int ksm(int x,int y){
int an=;
for(;y;y>>=,x=x*(ll)x%ha) if(y&) an=an*(ll)x%ha;
return an;
} inline void dvd(){
//质因数分解预处理出每个质因子有的指数集合
//dy[i]表示i这个质因子是第几个出现的
m=sqrt(now+0.5);
int c;
for(int i=;i<=m;i++) if(!(now%i)){
c=;
if(!dy[i]) dy[i]=++cnt;
while(!(now%i)) c++,now/=i;
g[dy[i]].pb(c),mx[dy[i]]=max(mx[dy[i]],c); if(now==) break;
} if(now!=){
if(!dy[now]) dy[now]=++cnt;
g[dy[now]].pb(),mx[dy[now]]=max(mx[dy[now]],);
}
} inline void solve(int x){
int tot=,dig=,pos=dy[x];
mul[]=;
//预处理等比数列前缀和
for(int i=;i<=mx[pos];i++){
dig=dig*(ll)x%ha;
mul[i]=mul[i-]+dig;
if(mul[i]>=ha) mul[i]-=ha;
} for(int i=g[pos].size()-;i>=;i--){
tot=tot*(ll)mul[g[pos][i]]%ha;
}
tot--;
if(tot<) tot+=ha;
tot=tot*(ll)(x-)%ha*(ll)ksm(x,ha-)%ha;
tot++; ans=ans*(ll)tot%ha;
} int main(){
// freopen("data.in","r",stdin);
// freopen("data.out","w",stdout); scanf("%d",&n);
while(n--){
scanf("%d",&now);
dvd();
} for(int i=;i<=maxm;i++) if(dy[i]) solve(i); printf("%d\n",ans);
return ;
}
 
 

bzoj DZY Loves Math V的更多相关文章

  1. 【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)

    3560: DZY Loves Math V Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 241  Solved: 133 Description ...

  2. [BZOJ] DZY Loves Math 系列 I && II

    为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...

  3. bzoj 3560 DZY Loves Math V - 线性筛 - 扩展欧几里得算法

    给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. Output 仅一行答案. Sampl ...

  4. BZOJ3560 DZY Loves Math V 数论 快速幂

    原文链接http://www.cnblogs.com/zhouzhendong/p/8111725.html UPD(2018-03-26):蒟蒻回来重新学数论了.更新了题解和代码.之前的怼到后面去了 ...

  5. BZOJ3560 : DZY Loves Math V

    因为欧拉函数是非完全积性函数,所以可以考虑对每个数进行分解质因数,将每个质数的解乘起来即可. 对于一个质数$p$,设它在各个数中分别出现了$b_1,b_2,...b_n$次,那么由生成函数和欧拉函数的 ...

  6. BZOJ3560 DZY Loves Math V(欧拉函数)

    对每个质因子分开计算再乘起来.使用类似生成函数的做法就很容易统计了. #include<iostream> #include<cstdio> #include<cmath ...

  7. BZOJ DZY Loves Math系列

    ⑤(BZOJ 3560) $\Sigma_{i_1|a_1}\Sigma_{i_2|a_2}\Sigma_{i_3|a_3}\Sigma_{i_4|a_4}...\Sigma_{i_n|a_n}\ph ...

  8. [BZOJ3560]DZY Loves Math V(欧拉函数)

    https://www.cnblogs.com/zwfymqz/p/9332753.html 由于欧拉函数是积性函数,可以用乘法分配律变成对每个质因子分开算最后乘起来.再由欧拉函数公式和分配律发现就是 ...

  9. 【bzoj3560】DZY Loves Math V 欧拉函数

    题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...

随机推荐

  1. [BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp

    我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #in ...

  2. MySQL使用笔记(六)条件数据记录查询

    By francis_hao    Dec 17,2016 条件数据记录查询 mysql> select field1,field2-- from table_name where 条件; 其中 ...

  3. POJ1308:Is It A Tree?(并查集)

    Is It A Tree? 题目链接:http://poj.org/problem?id=1308 Description: A tree is a well-known data structure ...

  4. [POJ2135]最小费用最大流

    一直由于某些原因耽搁着...最小费用最大流没有搞会. 今天趁着个人状态正佳,赶紧去看看,果然30min不到看会了算法+模板并且A掉了一道题. 感觉最小费用最大流在学过了最大流之后还是挺好理解的.找到从 ...

  5. 【STSRM12】夏令营(分治决策单调+主席树)

    [题意]n个数字分成k段,每一段的价值是段内不同数字的个数,求最大价值.n<=35000,k<=50. [算法]分治决策单调+主席树(可持久化线段树) [题解] f[i][j]表示前i天分 ...

  6. 【BZOJ】1770 [Usaco2009 Nov]lights 燈

    [算法]高斯消元-异或方程组 [题解]良心简中题意 首先开关顺序没有意义. 然后就是每个点选或不选使得最后得到全部灯开启. 也就是我们需要一种确定的方案,这种方案使每盏灯都是开启的. 异或中1可以完美 ...

  7. python configparse

    # 参考:https://www.cnblogs.com/lily1989/p/8401005.html # https://blog.csdn.net/willhuo/article/details ...

  8. Mac-配置SecureCRT

    1. Tools - Create Public Key - 2. Select Key Type 3. Create Passphrase 4.Input  Key Length 5. Genera ...

  9. HTML5初学---坦克大战基础

    让小球动起来,根据键盘的W(上),D(右),S(下),A(左):键的点击移动小球 <!DOCTYPE html> <html> <head> <meta ch ...

  10. 查询oracle数据库中当前数据库所有表的名称

    http://www.cnblogs.com/hyq0002013/p/5948419.html select t.table_name from user_tables t;