spoj p104 Matrix-Tree定理
这个问题就是经典的生成树记数问题,题目为spoj p104 highway。
首先我们引入Matrix-Tree定理,由kirchhoff证明,定理的概述为,对于图G,我们定义若干个矩阵,
D[G],Dij=(i!=j)?0:vi;这里vi为节点i的度数。
A[G],Aij=存在边(u,v),即A为图G的连通01矩阵。
定义Kirchhoff Matrix C[G]=D[G]-A[G],那么C[G]的任意一个n-1阶主子式的行列式的绝对值为图G生成树个数。
这样这个问题就可以比较容易的解决了,行列式的求法为将矩阵用类似于消元的方法消成上三角矩阵(其实我也是记住的代码= =)。
//By BLADEVIL
#include <cstdio>
#include <cstring>
#define maxn 20 using namespace std; int a[maxn][maxn];
double g[maxn][maxn]; bool zero(double x)
{
return (((x<)?-x:x)<1e-);
} void swap(double &a,double &b)
{double c=a;a=b;b=c;} double delte(double a[maxn][maxn],int n)
{
int sign=;
double ans=;
for (int i=;i<=n;i++)
{
if (zero(a[i][i]))
{
int j;
for (j=i+;(j<=n)&&(zero(a[j][i]));j++);
if (j>n) return ;
for (int k=i+;k<=n;k++) swap(a[i][k],a[j][k]);
sign++;
}
ans*=a[i][i];
for (int j=i+;j<=n;j++) a[i][j]/=a[i][i];
for (int j=i+;j<=n;j++)
for (int k=i+;k<=n;k++)
a[j][k]-=a[i][j]*a[k][i];
}
if (sign&) ans=-ans;
return ans;
} void solve()
{
int n,m;
scanf("%d%d",&n,&m);
memset(g,,sizeof g); memset(a,,sizeof a);
for (int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
a[x][y]=a[y][x]=;
g[x][x]++; g[y][y]++;
}
n--;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
if (a[i][j]) g[i][j]=-;
printf("%.0f\n",delte(g,n));
} int main()
{
int task;
scanf("%d",&task);
while (task--) solve();
return ;
}
spoj p104 Matrix-Tree定理的更多相关文章
- BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- 【证明与推广与背诵】Matrix Tree定理和一些推广
[背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...
- 数学-Matrix Tree定理证明
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
- HDU 4305 Lightning Matrix Tree定理
题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...
- BZOJ.4894.天赋(Matrix Tree定理 辗转相除)
题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
- [模板]Matrix Tree定理
结论:一个图的生成树个数等于它的度数矩阵减邻接矩阵得到的矩阵(基尔霍夫矩阵)的任意一个n-1阶主子式的行列式的绝对值 证明:不会 求法:高斯消元 例题:[HEOI2013]小Z的房间 #include ...
随机推荐
- 第二篇 Python初识别及变量名定义规范
第一个Python程序 可以打开notepad或者其他文本编辑器,输入:print("Hello Python!"),将文件保存到任意盘符下,后缀名是 .py 两种python程 ...
- tomcat8编码设置和gc异常解决
用startup.bat启动 编码解决: 用编辑器打开catalina.bat文件找到set "JAVA_OPTS=%JAVA_OPTS% %JSSE_OPTS% " 更改为 se ...
- 并查集——poj1308(并查集延伸)
题目链接:Is It A Tree? 题意:给你一系列形如u v的点对(u v代表一条由u指向v的有向边),请问由给你的点构成的图是不是一棵树? 树的特征:①每个节点(除了根结点)只有一个入度:②只有 ...
- Spring定时器调用Hibernate方法无法获得SessionFactory的解决办法
由于在Spring定时器中无法通过注解的方式获取bean,因此需要通过原生的方式获取.获取session的方式如下: WebApplicationContext wac = ContextLoader ...
- [android]不解锁刷机
本人因为误操作进入andriod recovery模式,显示failed to boot 2,致手机无法恢复出厂值, 当时那叫一个郁闷.上论坛搜寻无数,唉让刷底包的无数(在此不解释),万恶的刷底包. ...
- LTE中基于S1的切换
1:源eNodeB决定进行基于S1的切换.S1切换的原因可能是源eNodeB和目标eNodeB之间不存在X2连接,或者源eNodeB根据其他情况作出的判断. 2:源eNodeB向源MME发送Hando ...
- python的三种控制流
什么是控制流 >>控制代码执行顺序的语句 >>python中有哪些控制流 >>顺序结构 >>> a = 7 >>> print( ...
- springboot ueditor 使用心得
1.将ueditor引入项目中会发现,图片不能上传,返回值意思是因配置文件错误,导致图片无法上传 默认情况是使用jsp初始配置文件,这就需要项目支持jsp解析 在maven中引入 <!--添加对 ...
- Java 如何正确停止一个线程
自己在做实验性小项目的时候,发现自己遇到一个问题:如何控制线程的"死亡"? 首先,如何开启一个线程呢? 最简单的代码: public class Main { public sta ...
- 【题解】POI2014FAR-FarmCraft
这题首先手玩一下一下数据,写出每个节点修建软件所需要的时间和到达它的时间戳(第一次到达它的时间),不难发现实际上就是要最小化这两者之和.然后就想到:一棵子树内,时间戳必然是连续的一段区间,而如果将访问 ...