gym101201J Shopping 二分+RMQ+数学性质
题目大意:
给出n个商品的价格,排成一列,q次查询,每次查询如果你有x的钱,从l格子走到r格子,每种商品有无数个,能买就买,最后还会剩多少钱。
思路:
每一次买都要找离自己最近的且买的起的商品,这样可以二分区间,用线段树(rmq问题,可以用st表)找到离自己最近且买得起的商品,然后不断的向r逼近,最后就是答案。
这个思路为什么不会超时的呢,因为可以想象,每次买完一个商品,你的剩余的钱最多也是这个商品价格的余数,而后面你买的起的商品价格肯定比这个小,所以稍微举几个例子就发现不会枚举几次的,有点像斐波那契数列的递减。(最坏的情况是商品价格为7,6,5,4,3,2,1,这样的时间复杂度也许会退化,但发现如果能走完这个过程,至少也要有28块钱,这个钱在买7的时候会直接用完,所以时间复杂度不会退化)。
借用了队友写的代码,st表解决RMQ真的好短。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
int n, q;
ll a[N]; ll dp[N][];
int mm[N];
void init(int n, ll b[])
{
mm[] = -;
for (int i = ; i <= n; ++i)
{
mm[i] = ((i & (i - )) == ) ? mm[i - ] + : mm[i - ];
dp[i][] = b[i];
}
for (int j = ; j <= mm[n]; ++j)
for (int i = ; i + ( << j) - <= n; ++i)
dp[i][j] = min(dp[i][j - ], dp[i + ( << (j - ))][j - ]);
} ll query(int l, int r)
{
int k = mm[r - l + ];
return min(dp[l][k], dp[r - ( << k) + ][k]);
} int main()
{
while (scanf("%d%d", &n, &q) != EOF)
{
for (int i = ; i <= n; ++i) scanf("%lld", a + i); init(n, a);
ll v;
for (int i = , l, r; i <= q; ++i)
{
scanf("%lld%d%d", &v, &l, &r);
while (r - l >= )
{
int ql = l, qr = r, tar = -;
while (qr - ql >= )
{
int mid = (ql + qr) >> ;
if (query(ql, mid) <= v)
{
qr = mid - ;
tar = mid;
}
else
ql = mid + ;
}
if (tar == -) break;
v %= a[tar];
l = tar + ;
}
printf("%lld\n", v);
}
}
return ;
}
gym101201J Shopping 二分+RMQ+数学性质的更多相关文章
- BZOJ 2780: [Spoj]8093 Sevenk Love Oimaster( 后缀数组 + 二分 + RMQ + 树状数组 )
全部串起来做SA, 在按字典序排序的后缀中, 包含每个询问串必定是1段连续的区间, 对每个询问串s二分+RMQ求出包含s的区间. 然后就是求区间的不同的数的个数(经典问题), sort queries ...
- Internet 校验和的数学性质
Internet 校验和(Checksum)仅计算头部的正确性,这一点很重要,这意味着 IP 协议不检查 IPv4 packet 有效载荷部分的数据正确性.为了保证有效载荷部分的正常传输,其他协议必须 ...
- 2016 ACM/ICPC Asia Regional Dalian Online 1008 Function 二分+RMQ
Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submissio ...
- HDU 5289 Assignment(2015 多校第一场二分 + RMQ)
Assignment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Total ...
- Bad Hair Day [POJ3250] [单调栈 或 二分+RMQ]
题意Farmer John的奶牛在风中凌乱了它们的发型……每只奶牛都有一个身高hi(1 ≤ hi ≤ 1,000,000,000),现在在这里有一排全部面向右方的奶牛,一共有N只(1 ≤ N ≤ 80 ...
- 【BZOJ5083】普及 单调栈+二分+RMQ
[BZOJ5083]普及 Description 有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(从左到右或从右到左一个一个取出),使得 不管是从左往右还是从右往左取,都保证每时每刻 ...
- Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)
Strip time limit per test 1 second memory limit per test 256 megabytes input standard input output s ...
- HDU - 5289:Assignment(单调队列||二分+RMQ||二分+线段树)
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this com ...
- 【BZOJ3230】相似子串 后缀数组+二分+RMQ
[BZOJ3230]相似子串 Description Input 输入第1行,包含3个整数N,Q.Q代表询问组数.第2行是字符串S.接下来Q行,每行两个整数i和j.(1≤i≤j). Output 输出 ...
随机推荐
- python3--列表生成式
# Auther: Aaron Fan # 原始的写法:a = []for i in range(10): a.append(i*2)print(a) # 用列表生成式完成上面的写法:a = [i*2 ...
- 详解servlet的url-pattern匹配规则.RP
首先需要明确几容易混淆的规则: servlet容器中的匹配规则既不是简单的通配,也不是正则表达式,而是特定的规则.所以不要用通配符或者正则表达式的匹配规则来看待servlet的url-pattern. ...
- WIN XP蓝屏代码大全
转自:廊坊师范学院信息技术提高班---韩正阳 http://blog.csdn.net/jiudihanbing WIN XP蓝屏代码大全WIN XP蓝屏代码大全一.蓝屏含义 1.故障检查信息 *** ...
- Android onKeyDown、onKeyUp、dispatchKeyEvent的区别
1. onKeyDown.onKeyUp.dispatchKeyEvent的区别和使用场景 区别: 1.1 onKeyDown.onKeyUp是按键事件的回调接口(冒泡式调用),dispatchKey ...
- 【Azure Active Directory】单一登录 (SAML 协议)
Azure Active Directory 支持 SAML 2.0 Web 浏览器单一登录 (SSO) 配置文件. 若要请求 Azure Active Directory 对用户进行身份验证时,云服 ...
- 《架构师杂志》评述:Scott Guthrie
发布日期: 2007-03-29 | 更新日期: 2007-03-29 Scott Guthrie 是 Microsoft 开发事业部的总经理.他领导着负责构建 CLR(公共语言运行库).ASP. ...
- 编写高质量代码改善C#程序的157个建议——建议45:为泛型类型参数指定逆变
建议45:为泛型类型参数指定逆变 逆变是指方法的参数可以是委托或者泛型接口的参数类型的基类.FCL4.0中支持逆变的常用委托有: Func<int T,out TResult> Predi ...
- 牌型总数——第六届蓝桥杯C语言B组(省赛)第七题
原创 牌型种数 小明被劫持到X赌城,被迫与其他3人玩牌.一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张.这时,小明脑子里突然冒出一个问题:如果不考虑花色,只考虑点数,也不考虑自己得 ...
- 关于使用idea的一些小技巧
1:idea与git同步以后查看修改变化: file --setting--versioncontorller
- .properties文件的使用
在很多项目中我们都会使用到.properties文件对我们的项目进行配置,今天就介绍一下.properties文件在项目中的使用: 如下图,我们项目中有一个名为project.properties的p ...