题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655

先考虑DP。dp[ i ][ j ]表示值域为 i 、选 j 个值的答案,则 dp[ i ][ j ] = dp[ i-1 ][ j ] + dp[ i-1 ][ j-1] * i * j 。两项分别表示一定不选/一定选第 i 个值。

因为答案是值域大、个数小,所以考虑只看 dp[ ][ n ] ,即把值域看成自变量。

不知怎么知道这个式子的次数是 2*n 。尝试用做几遍差分看什么时候数列都为0的方法来看,但得出应该是 2*n - 2 次才对呀……

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=,K=,M=;
ll dp[M][M],c[M];
int pw(int x,int k)
{
int ret=;while(k){if(k&)ret*=x;x*=x;k>>=;}return ret;
}
int main()
{
dp[][]=;
for(int i=;i<=K;i++)
for(int j=;j<=N;j++)
dp[i][j]=dp[i-][j]+dp[i-][j-]*i*j;
for(int i=N;i<=K;i++)c[i]=dp[i][N];
int cnt=,nw=N;
while(c[K])
{
for(int i=K;i>=nw;i--)
c[i]-=c[i-]; c[nw-]=;
for(int i=;i<=K;i++)
printf("%6lld ",c[i]); puts("");
nw++; cnt++;
}
printf("cnt=%d\n",cnt);
return ;
}

打表观察

以为值域<个数的dp无意义,于是选择 n~3*n 这 2*n+1 个值。但其实值域<个数的也能用。

注意 x[ i ] - x[ j ] 有负数,最后(答案+mod)%mod。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int N=;
int n,A,mod,dp[N*][N],ans;
int pw(int x,int k)
{
int ret=;while(k){if(k&)ret=(ll)ret*x%mod;x=(ll)x*x%mod;k>>=;}return ret;
}
int main()
{
scanf("%d%d%d",&A,&n,&mod);
int lm=n*;
for(int i=;i<=lm;i++)dp[i][]=;///
for(int i=;i<=lm;i++)
for(int j=;j<=i&&j<=n;j++)
dp[i][j]=(dp[i-][j]+(ll)dp[i-][j-]*i%mod*j)%mod;
if(A<=lm)
{
printf("%d\n",dp[A][n]);return ;
}
int s0,s1;
for(int i=n;i<=lm;i++)
{
s0=; s1=;//////
for(int j=n;j<=lm;j++)
{
if(j==i)continue;
s0=(ll)s0*(A-j)%mod; s1=(ll)s1*(i-j)%mod;
}
ans=(ans+(ll)s0*pw(s1,mod-)%mod*dp[i][n]%mod)%mod;
}
printf("%d\n",(ans+mod)%mod);
return ;
}

bzoj 2655 calc——拉格朗日插值的更多相关文章

  1. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  2. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  3. bzoj 2566 calc 拉格朗日插值

    calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 377  Solved: 226[Submit][Status][Discuss] Descr ...

  4. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  5. P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析

    LINK:calc 容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数. 不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西. 这里考虑观察优化dp的做法. 不 ...

  6. bzoj 2655: calc [容斥原理 伯努利数]

    2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...

  7. [BZOJ 2655]calc

    Description 题库链接 给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足"长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \ ...

  8. BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2655 题解 据说有一种神仙容斥做法,但我不会. 以及貌似网上大多数人的dp和我的做法都不 ...

  9. bzoj千题计划269:bzoj2655: calc (拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] * ...

随机推荐

  1. MySQL-5.7权限详解

    1.MySQL权限级别 (1)全局性管理权限 作用于整个MySQL实例级别 *.*代表所有数据库的权限 mysql> grant all on *.* to 'test'@'%'; Query ...

  2. Cocos2d-x项目移植到WP8系列之七:中文显示乱码

    原文链接:http://www.cnblogs.com/zouzf/p/3984628.html C++和C#互调时经常会带一些参数过去例如最常见的字符串,如果字符串里有中文的话,会发现传递过去后变成 ...

  3. git上面创建个人简历-链接

    github创建个人在线简历: https://segmentfault.com/a/1190000006820290

  4. INSPIRED启示录 读书笔记 - 第28章 创业型公司的产品管理

    产品设计方式 第一步:创业初期只设三个职位,产品经理.交互设计师和原型开发人员(职位可以兼任) 第二步:快速展开产品设计(高保真原型),邀请真实的目标用户验证产品原型,迭代修改 第三步:随着迭代的深入 ...

  5. Spring MVC 接收多个实体参数

    在SpringMVC 的接收参数中,如果接收一个实体对象,只需要在方法参数中这样做:@RequestBody User user //单个的时候这样接收 @RequestMapping(value = ...

  6. FIND_IN_SET的简单使用

    FIND_IN_SET(str,strlist)函数 str 要查询的字符串 strlist 字段名 参数以”,”分隔 如 (1,2,6,8) 查询字段(strlist)中包含(str)的结果,返回结 ...

  7. 【P1582】倒水(数论??暴力!!)

    这个题我很无语,一开始看绿题,还是数论,应该不会特别简单,应该要动笔写上好一会,过了一会旁边 #祝神 说这原来是个蓝题,我顿时觉得十分迷茫... 结果看了这个题看了一会,仔细一想,woc,这题怕不是可 ...

  8. html div + css 下划线

    这里通过边框属性的虚线边框border控制虚线.以下设置的css 高度(css height)和css 宽度(css width)为350像素是为了便于观看演示 其它意思.一.四边为虚线边框borde ...

  9. 用intellij idea 写第一个Java程序

    Java小白,还不怎么会eclipse,只会在命令行用javac编译并java运行编译后的类. 英文还不好orz 发现创建项目后,能build但就是不能run... 找了半天教程没找着,去官网溜了一下 ...

  10. Codeforces 938E Max History:排列 + 逆元【考虑单个元素的贡献】

    题目链接:http://codeforces.com/problemset/problem/938/E 题意: 定义f(a): 初始时f(a) = 0, M = 1. 枚举i = 2 to n,如果a ...