题目连接:http://poj.org/problem?id=1860

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

题目大意:有若干种货币,若干个兑换点,每个兑换点可以把一种货币兑换为另一种货币(可A->B,也可B->A),但是兑换有佣金,假设把A变为B,汇率为r,佣金为c,则B=(A-c)*r。给出这些兑换点的信息 以及 初始的钱的种类和数量,求是否可能进过若干次兑换使钱(最后必须是最开始的币种)变多;解题思路:转化为图,货币为节点,兑换点为边,则构成一个无向图,而问题就转化成了求次无向图是否存在正环(因为最后要化成开始的币种,而不是价值变多即可,所以是求正环)用Bellman——fold算法的思想,可以无限松弛即为正环,就可以解决了(原算法为求负环,只需把初始化的状态和松弛条件改一下即可)
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cstring>

using namespace std;

struct Edge
{
    int from,to;
    double r,c;
    Edge(int u,int v,double r,double c):from(u),to(v),r(r),c(c) {}
};

vector<];
vector<Edge> edges;
]= {};
]= {};
];
int n;

bool bellman_fold(int s,double value)
{
    queue<int> Q;
    memset(d,,sizeof(d));
    Q.push(s);
    d[s]=value;
    inq[s]=;
    while(!Q.empty())
    {
        int u=Q.front();
        Q.pop();
        inq[u]=;
        ; i<G[u].size(); i++)
        {
            int now=G[u][i];
            Edge & e=edges[now];
            &&d[e.to]<(d[u]-e.c)*e.r)
            {
                d[e.to]=(d[u]-e.c)*e.r;
                if(!inq[e.to])
                {
                    Q.push(e.to);
                    inq[e.to]=;
                    if(++cnt[e.to]>n)
                        ;
                }
            }
        }
    }
    ;
}

int main()
{
    int m,no;
    ;
    double sum;
    cin>>n>>m>>no>>sum;
    while(m--)
    {
        int no1,no2;
        double rab,cab,rba,cba;
        scanf("%d%d%lf%lf%lf%lf",&no1,&no2,&rab,&cab,&rba,&cba);
        edges.push_back(Edge(no1,no2,rab,cab));
        G[no1].push_back(x);
        x++;
        edges.push_back(Edge(no2,no1,rba,cba));
        G[no2].push_back(x);
        x++;
    }
    bool flag = bellman_fold(no,sum);
    if(flag)
        cout<<"NO"<<endl;
    else
        cout<<"YES"<<endl;
}

poj1860(Bellman—fold)的更多相关文章

  1. POJ1860(Currency Exchange)

    题意: 给出一张各种货币交换的网络,问在网络中交换原有的货币,问货币能否增值? 解析: 判断是否存在正环即可  用spfa  负环和正环的判定方法一样  如果一个点的进队次数超过n次 则存在环 代码如 ...

  2. [笔记]LibSVM源码剖析(java版)

    之前学习了SVM的原理(见http://www.cnblogs.com/bentuwuying/p/6444249.html),以及SMO算法的理论基础(见http://www.cnblogs.com ...

  3. LibSVM源码剖析(java版)

    之前学习了SVM的原理(见http://www.cnblogs.com/bentuwuying/p/6444249.html),以及SMO算法的理论基础(见http://www.cnblogs.com ...

  4. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  5. LibLinear(SVM包)使用说明之(一)README

    转自:http://blog.csdn.net/zouxy09/article/details/10947323/ LibLinear(SVM包)使用说明之(一)README zouxy09@qq.c ...

  6. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 60000/30000K (Java/Other) T ...

  7. 从零开始学ios开发(十八):Storyboards(下)

    这篇我们完成Storyboards的最后一个例子,之前的例子中没有view之间的切换,这篇加上这个功能,使Storyboards的功能完整呈现.在Storyboards中负责view切换的东西叫做“s ...

  8. linux —— shell 编程(文本处理)

    导读 本文为博文linux —— shell 编程(整体框架与基础笔记)的第4小点的拓展.(本文所有语句的测试均在 Ubuntu 16.04 LTS 上进行) 目录 基本文本处理 流编辑器sed aw ...

  9. erlang程序优化点的总结(持续更新)

    转自:http://wqtn22.iteye.com/blog/1820587 转载请注明出处 注意,这里只是给出一个总结,具体性能需要根据实际环境和需要来确定 霸爷指出,新的erlang虚拟机有很多 ...

随机推荐

  1. setCharacterEncoding 是在request.getParameter获取参数之前 设置request的编码格式 一步到位

    setCharacterEncoding 是在request.getParameter获取参数之前 设置request的编码格式 一步到位

  2. Hello to the cruel world

  3. 【TMD模拟赛】上低音号 链表

    这道题一看有两个出发现点,一枚举点去找边界,想了一会就Pass了...,二是枚举相框,我们最起码枚举两个边界,然后发现平行边界更好处理,然而仍然只有30分,这个时候就来到了链表的神奇应用,我们枚举上界 ...

  4. 用boost::lexical_cast进行数值转换

    在STL库中,我们可以通过stringstream来实现字符串和数字间的转换: int i = 0;    stringstream ss; ss << "123";  ...

  5. Boke光纤交换机的snmp配置

    今天我配置了一下Boke光纤交换机e-300的snmp trap的配置 敲击help命令你会发现配置snmp的命令共有四个 snmpconfig                      Config ...

  6. video视频在结束之后回到初始状态

    目前尝试了两种解决方案,但是方案1在安卓移动端无法生效(猜测是因为移动端安卓启动的是原生的视频播放控件的原因) 方案一: 重新load资源,这种方法比较简洁,但是在安卓下不适用 video.addEv ...

  7. 动态规划:状压DP-斯坦纳树

    最小生成树是最小斯坦纳树的一种特殊情况 最小生成树是在给定的点集和边中寻求最短网络使所有点连通 而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开销最小 BZOJ2595 题意是给定一个棋盘 ...

  8. 【EOJ3652】乘法还原(二分图)

    题意: 思路:Orz Claris 先找出所有平方项,将与有平方项的数有关的数对暂时忽略,剩下的直接连边就是一张二分图,暴力DFS染色 将有平方项的数两边都加一个,再判字典序即可 我不会判字典序……耽 ...

  9. DB 基本性能指标

    DB: •500K I/O limit with kill(5M I/O limit for DWS) •10,000 return row limit with kill •30 seconds p ...

  10. Csharp 非安全代码

    using System; using System.Collections.Generic; using System.Text; namespace ConsoleApplication1 { c ...