3027: [Ceoi2004]Sweet

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 135  Solved: 66
[Submit][Status][Discuss]

Description

John得到了n罐糖果。不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的)。第i个糖果罐里有 mi个糖果。John决定吃掉一些糖果,他想吃掉至少a个糖果,但不超过b个。问题是John 无法确定吃多少个糖果和每种糖果各吃几个。有多少种方法可以做这件事呢?

Input

从标准输入读入每罐糖果的数量,整数a到b 
 
John能够选择的吃掉糖果的方法数(满足以上条件)

Output

把结果输出到标准输出(把答案模 2004 输出)

1<=N<=10,0<=a<=b<=10^7,0<=Mi<=10^6

Sample Input

2 1 3
3
5

Sample Output

9

HINT

(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),(1,1),(1,2),(2,1)

Source

对糖果是否装满容斥,通过插板法计算方案。

模数不为质数但n很小,可以将模数乘n!之后除n!。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
LL n,a,b;
LL m[];
LL mod=,mul=;
LL c(LL x,LL y) {
if(x<y) return ;
LL ans=;
for(int i=x;i>=x-y+;i--) ans=1LL*ans*i%mod;
return (ans/mul)%2004LL;
}
LL cnt(LL x) {
LL ans=;
for(int i=;i<(<<n);i++) {
LL f=,s=x;
for(int j=;j<=n;j++) if((<<(j-))&i) f++,s-=m[j]+;
if(s<) continue;
if(f&) ans-=c(s+n,n);
else ans+=c(s+n,n);
ans%=2004LL;
}
return ans;
}
int main() {
scanf("%lld%lld%lld",&n,&a,&b);
for(int i=;i<=n;i++) scanf("%lld",&m[i]);
for(int i=;i<=n;i++) mod*=i,mul*=i;
printf("%lld",((cnt(b)-cnt(a-))%2004LL+2004LL)%2004LL);
}

[BZOJ3027][Ceoi2004]Sweet 容斥+组合数的更多相关文章

  1. BZOJ3027 - [CEOI2004]Sweet

    Portal Description 给出\(n(n\leq10),a,b(a,b\leq10^7)\)与\(\{c_n\}(c_i\leq10^6)\),求使得\(\sum_{i=1}^n x_i ...

  2. [AHOI2015 Junior] [Vijos P1943] 上学路上 【容斥+组合数】

    题目链接:Vijos - P1943 题目分析 这是 AHOI 普及组的题目,然而我并不会做= =弱到不行= = 首先,从 (x, 0) 到 (0, y) 的最短路,一定是只能向左走和向上走,那么用组 ...

  3. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  4. 【容斥+组合数】Massage @2018acm徐州邀请赛 E

    问题 E: Massage 时间限制: 1 Sec  内存限制: 64 MB 题目描述 JSZKC  feels  so  bored  in  the  classroom  that  he  w ...

  5. 【BZOJ4665】小w的喜糖 容斥+组合数

    [BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...

  6. 2018.12.30 bzoj3027: [Ceoi2004]Sweet(生成函数+搜索)

    传送门 生成函数好题. 题意简述:给出n个盒子,第iii个盒子里有mim_imi​颗相同的糖(但不同盒子中的糖不相同),问有多少种选法可以从各盒子中选出数量在[a,b][a,b][a,b]之间的糖果. ...

  7. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  8. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  9. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

随机推荐

  1. thinkphp3.2 常用单字母函数

    U函数:用来生成url U('地址表达式',['参数'],['伪静态后缀'],['显示域名'] 例如: U('Blog/read?id=1') // 生成Blog控制器的read操作 并且id为1的U ...

  2. Dubbo 的 Helloworld

    前提条件 安装好了 ZooKeeper 作为注册中心 服务端 <?xml version="1.0" encoding="UTF-8"?> < ...

  3. [洛谷P3765]总统选举

    题目大意:有$n(n\leqslant5\times10^5)$个数,有$m(m\leqslant5\times10^5)$次询问. 一次询问形如$l\;r\;s\;k\;w_1\;w_2\dots ...

  4. [LG1886]滑动窗口 单调队列

    ---题面--- 题解: 观察数据范围,这应该是一个复杂度O(n)的题.以最大值为例,考虑单调队列,维护一个单调递减的队列.从前向后扫,每次答案取队首,如果后面进入的比前面大,那么就弹出前面的数,因为 ...

  5. ionic2-键盘覆盖输入框和返回键问题解决方案

    http://blog.csdn.net/u012979009/article/details/52514892有遇到这个问题的去这个地址看

  6. Idea 怎么远程debug

    注意的问题:远程debug别人的服务器只能开一个debug,所以当你的同事比你先远程debug同一台服务器时,你应该报Error running 某某ip地址 .unable to open debu ...

  7. xiaoluo同志Linux学习之CentOS6.4

    小罗同志写的不错,弄个列表过来啊   Linux学习之CentOS(三十六)--FTP服务原理及vsfptd的安装.配置 xiaoluo501395377 2013-06-09 01:04 阅读:56 ...

  8. 【转载】深入理解PHP Opcode缓存原理

    转载地址:深入理解PHP Opcode缓存原理 什么是opcode缓存? 当解释器完成对脚本代码的分析后,便将它们生成可以直接运行的中间代码,也称为操作码(Operate Code,opcode).O ...

  9. webpack 配置学习笔记

    最简单的 webpack 配置 const path = require('path') module.exports = { entry: './app/index.js', output: { p ...

  10. Spring - IoC(1): Spring 容器

    BeanFactory & ApplicationContext org.springframework.beans.factory.BeanFactory 是最基本的 Spring 容器接口 ...