Newman likes playing with cats. He possesses lots of cats in his home. Because the number of cats is really huge, Newman wants to group some of the cats. To do that, he first offers a number to each of the cat (1, 2, 3, …, n). Then he occasionally combines the group cat i is in and the group cat j is in, thus creating a new group. On top of that, Newman wants to know the size of the k-th biggest group at any time. So, being a friend of Newman, can you help him?

Input

1st line: Two numbers N and M (1 ≤ NM ≤ 200,000), namely the number of cats and the number of operations.

2nd to (m + 1)-th line: In each line, there is number C specifying the kind of operation Newman wants to do. If C = 0, then there are two numbers i and j (1 ≤ ij ≤ n) following indicating Newman wants to combine the group containing the two cats (in case these two cats are in the same group, just do nothing); If C = 1, then there is only one number k (1 ≤ k ≤ the current number of groups) following indicating Newman wants to know the size of the k-th largest group.

Output

For every operation “1” in the input, output one number per line, specifying the size of the kth largest group.

Sample Input

10 10
0 1 2
1 4
0 3 4
1 2
0 5 6
1 1
0 7 8
1 1
0 9 10
1 1

Sample Output

1
2
2
2
2

Hint

When there are three numbers 2 and 2 and 1, the 2nd largest number is 2 and the 3rd largest number is 1.

并查集+treap。

开始打算把个数当成第一关键字,id当成第二关键字(weight,rnd),发现处理起来和麻烦,何况一个点可能记录有多个相同数值的点。

就只记录个数。

和上一题有些像,只是多了一个删除函数,一直向下移再删去即可。

不过写了这么几道题,还是对地址符的运用不太理解和熟练。

还可以用树状数组或者线段树来解决,以后再试一试。

(到时候线段树套平衡树有得我学了。。。ORZ)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=;
const int inf=1e9;
int f[maxn],a[maxn];
int find(int x)
{
if(f[x]!=x) f[x]=find(f[x]);
return f[x];
}
struct Treap
{
int ch[maxn][],size[maxn],cnt[maxn],rnd[maxn],val[maxn],root,Cnt;
Treap()
{
Cnt=;
root=;
rnd[]=inf;
}
void update(int x)
{
size[x]=cnt[x]+size[ch[x][]]+size[ch[x][]];
}
void insert(int &now,int x)//地址符,别忘记
{
if(now){
if(val[now]==x) cnt[now]++;
else {
int t=x>val[now];//now可能会变,所以用t。
insert(ch[now][t],x); //操作有儿子的。
if(rnd[now]>rnd[ch[now][t]]) rotate(now,t);
}
}
else {//无儿子,不操作。
now=++Cnt;
val[now]=x;
cnt[now]=;
//size[now]=1;后面会更新
rnd[now]=rand();
ch[now][]=ch[now][]=;
}
update(now);
}
int rotate(int &now,int t)
{
int son=ch[now][t];
ch[now][t]=ch[son][-t];
ch[son][-t]=now;
update(now);
update(son);
now=son;//这里其实不是很理解。
}
void erase(int &now,int k)
{
if(val[now]==k){
if(cnt[now]>) cnt[now]--;
else{
if(ch[now][]==&&cnt[ch[now][]]==)
{
now=;
return ;
}
int t=rnd[ch[now][]]>rnd[ch[now][]];
rotate(now,t);
erase(now,k);
}
}
else erase(ch[now][val[now]<k],k);
update(now);
}
int query(int now,int k)
{
if(size[ch[now][]]>=k) return query(ch[now][],k);
k-=(size[ch[now][]]+cnt[now]);
if(k<=) return val[now];
return query(ch[now][],k);
}
};
Treap treap;
int main()
{
int n,m,i,k,x,y;
scanf("%d%d",&n,&m);
for(i=;i<=n;i++) f[i]=i,a[i]=;
for(i=;i<=n;i++) treap.insert(treap.root,);
for(i=;i<=m;i++){
scanf("%d",&k);
if(!k) {
scanf("%d%d",&x,&y);
x=find(x),y=find(y);
if(x==y) continue;
f[y]=x;
treap.erase(treap.root,a[x]);
treap.erase(treap.root,a[y]);
a[x]+=a[y];
treap.insert(treap.root,a[x]);
n--;//!
}
else {
scanf("%d",&k);
printf("%d\n",treap.query(treap.root,n-k+)); //反着找
}
}
return ;
}

POJ2985 The k-th Largest Group (并查集+treap)的更多相关文章

  1. 51 nod 1456 小K的技术(强连通 + 并查集)

    1456 小K的技术 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题   苏塞克王国是世界上创新技术的领先国家,在王国中有n个城市 ...

  2. POJ2985 The k-th Largest Group[树状数组求第k大值+并查集||treap+并查集]

    The k-th Largest Group Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8807   Accepted ...

  3. [poj-2985]The k-th Largest Group_Treap+并查集

    The k-th Largest Group poj-2985 题目大意:给你n只猫,有两种操作:1.将两只猫所在的小组合并.2.查询小组数第k大的小组的猫数. 注释:1<=n,m<=20 ...

  4. K:Union-Find(并查集)算法

    相关介绍:  并查集的相关算法,是我见过的,最为之有趣的算法之一.并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.其相关的实现代码较为简短,实现思想也 ...

  5. 第46届ICPC澳门站 K - Link-Cut Tree // 贪心 + 并查集 + DFS

    原题链接:K-Link-Cut Tree_第46屆ICPC 東亞洲區域賽(澳門)(正式賽) (nowcoder.com) 题意: 要求一个边权值总和最小的环,并从小到大输出边权值(2的次幂):若不存在 ...

  6. 【bzoj1604】[Usaco2008 Open]Cow Neighborhoods 奶牛的邻居 旋转坐标系+并查集+Treap/STL-set

    题目描述 了解奶牛们的人都知道,奶牛喜欢成群结队.观察约翰的N(1≤N≤100000)只奶牛,你会发现她们已经结成了几个“群”.每只奶牛在吃草的时候有一个独一无二的位置坐标Xi,Yi(l≤Xi,Yi≤ ...

  7. poj2492(种类并查集/各种解法)

    题目链接: http://poj.org/problem?id=2492 题意: 有t组测试数据, 对于每组数据,第一行n, m分别表示昆虫的数目和接下来m行x, y, x, y表示教授判断x, y为 ...

  8. Educational Codeforces Round 7 C. Not Equal on a Segment 并查集

    C. Not Equal on a Segment 题目连接: http://www.codeforces.com/contest/622/problem/C Description You are ...

  9. 种类并查集——带权并查集——POJ1182;HDU3038

    POJ1182 HDU3038 这两个题比较像(一类题目),属于带权(种类)并查集 poj1182描绘得三种动物种类的关系,按照他一开始给你的关系,优化你的种类关系网络,最后看看再优化的过程中有几处矛 ...

随机推荐

  1. storage

    localStorage(本地存储),可以长期存储数据,没有时间限制,一天,一年,两年甚至更长,数据都可以使用. sessionStorage(会话存储),只有在浏览器被关闭之前使用,创建另一个页面时 ...

  2. iOS代码瘦身实践

    1 分析当前ipa的组成 一般一个ipa会包含: 1) 资源文件 本地文件:数据.配置.数据库等等 字体文件 图片资源 2)  源代码 通过生成linkmap文件,分析源代码生成的编译文件的大小.在B ...

  3. 每天一个Linux命令(61)killall命令

        killall命令用进程的名字来杀死进程.     (1)用法:     用法:  killall [ -egiqvw ] [ -signal ] [进程名称] 格式:killall -< ...

  4. [转]springmvc中的常用的返回

    package com.boventech.learning.controller; import java.util.HashMap; import java.util.Map; import or ...

  5. ES6 随记(1)-- let 与 const

    1. const(声明一个只读的常量) 这个是很好理解的,且声明时就必须赋值而不能以后再赋,不然会报错. 而个人认为它最大的用处还是在于 {} 和 [] 上,const 保证了它的内存地址(指针)不变 ...

  6. 每日练习level-7

    1.有序列表.无序列表.自定义列表如何使用?写个简单的例子.三者在语义上有什么区别?使用场景是什么? 能否嵌套? 有序列表是一列使用数字进行标记的项目,它使用<li>包含于<ol&g ...

  7. Vue全家桶 vue + vue-router + vuex

    Vue实例的生命周期钩子函数(8个)        1. beforeCreate             data属性光声明没有赋值的时候        2. created             ...

  8. P4299 首都

    题目 P4299 首都 做法 这题是动态维护树的重心,连边后找到两棵树的重心拉一条链(性质:新重心在链上),然后暴力爬 要注意: 1.是找重心的过程中要先把旋转标记放下来,因为\(Splay(x)\) ...

  9. Android 下的usb框架及功能点【转】

    本文转载自:https://blog.csdn.net/tianruxishui/article/details/37902959 有关USB android框架的链接 http://blog.sin ...

  10. JAVAWeb学习总结(一)

    一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源( ...