poj1840 Eqs(hash+折半枚举)
Description
a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0
The coefficients are given integers from the interval [-50,50].
It is consider a solution a system (x1, x2, x3, x4, x5) that verifies the equation, xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}.
Determine how many solutions satisfy the given equation.
Input
Output
Sample Input
37 29 41 43 47
Sample Output
654
题意:求a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 在x∈[-50,50]且x!=0的解的个数
x1=a且x2=b与x1=b且x2=a算两个解
题解:因为a1,a2,a3,a4,a5是固定的,所以只需要枚举x1,x2,x3,x4,x5即可
复杂度为O(n^5)
等等!O(n^5)?!
这是要t的节奏啊
该怎么办呢?
改下公式吧~
a3x33+ a4x43+ a5x53=-a1x13 -a2x23
这样先枚举右边的解数,再枚举x3,x4,x5,看看满不满足右边即可
这种折半枚举的思路很好,至于如何检验满不满足,本来是准备用map的,结果t了
于是只好hash了……
最好打的hash704ms,好像也不坏
至于poj的abs……emmm也是醉了
代码如下:
#pragma GCC optimize(2)
#include<map>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x3f3f3f3f
using namespace std; vector<long long> g[];
int a1,a2,a3,a4,a5,ans; int main()
{
scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5);
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
long long x=a1*(i*i*i)+a2*(j*j*j);
int key=x<?(-x)%:x%;
g[key].push_back(x);
}
}
for(int i=-; i<=; i++)
{
if(!i)
{
continue;
}
for(int j=-; j<=; j++)
{
if(!j)
{
continue;
}
for(int k=-; k<=; k++)
{
if(!k)
{
continue;
}
long long y=a3*(i*i*i)+a4*(j*j*j)+a5*(k*k*k);
int key=y<?(-y)%:y%;
for(int w=;w<g[key].size();w++)
{
if(g[key][w]==-y)
{
ans++;
}
}
}
}
}
printf("%d\n",ans);
}
poj1840 Eqs(hash+折半枚举)的更多相关文章
- poj2002 Squares(hash+折半枚举)
Description A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-d ...
- 折半枚举+Hash(HDU1496升级版)
题目链接:N - 方程的解 给定一个四元二次方程: Ax1^2+Bx2^2+Cx3^2+Dx4^2=0 试求−1000≤x1,x2,x3,x4≤1000非零整数解的个数. −10000≤A,B,C,D ...
- Load Balancing 折半枚举大法好啊
Load Balancing 给出每个学生的学分. 将学生按学分分成四组,使得sigma (sumi-n/4)最小. 算法: 折半枚举 #include <iostrea ...
- CSU OJ PID=1514: Packs 超大背包问题,折半枚举+二分查找。
1514: Packs Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 61 Solved: 4[Submit][Status][Web Board] ...
- NYOJ 1091 超大01背包(折半枚举)
这道题乍一看是普通的01背包,最最基础的,但是仔细一看数据,发现普通的根本没法做,仔细观察数组发现n比较小,利用这个特点将它划分为前半部分和后半部分这样就好了,当时在网上找题解,找不到,后来在挑战程序 ...
- Codeforces 888E - Maximum Subsequence(折半枚举(meet-in-the-middle))
888E - Maximum Subsequence 思路:折半枚举. 代码: #include<bits/stdc++.h> using namespace std; #define l ...
- Codeforces 912 E.Prime Gift (折半枚举、二分)
题目链接:Prime Gift 题意: 给出了n(1<=n<=16)个互不相同的质数pi(2<=pi<=100),现在要求第k大个约数全在所给质数集的数.(保证这个数不超过1e ...
- poj_3977 折半枚举
题目大意 给定N(N<=35)个数字,每个数字都<= 2^15. 其中一个或多个数字加和可以得到s,求出s的绝对值的最小值,并给出当s取绝对值最小值时,需要加和的数字的个数. 题目分析 需 ...
- POJ 3977 Subset(折半枚举+二分)
SubsetTime Limit: 30000MS Memory Limit: 65536KTotal Submissions: 6754 Accepted: 1277 D ...
随机推荐
- iSCSI存储的3种连接方式
我们分析了iSCSI存储的系统结构,下面来看iSCSI是如何与服务器.工作站等主机设备来连接的,也就是我们如何建立一个iSCSI网络存储系统. iSCSI设备的主机接口一般默认都是IP接口,可以直接与 ...
- 别人的dubbo学习笔记
本文转载自:http://blog.csdn.net/tao_qq/article/details/49952229 学习dubbo,开始做一些笔记. 1> 启动dubbo-admin模块的时候 ...
- JDK 8 - Lambda Expression 的优点与限制
我们知道 JDK 8 新增了 Lambda Expression 这一特性. JDK 8 为什么要新增这个特性呢? 这个特性给 JDK 8 带来了什么好处? 它可以做什么?不可以做什么? 在这篇文章, ...
- 【转】Jmeter笔记:响应断言详解
平时我们使用jmeter进行性能测试时,经常会用到断言.jmeter提供了很多种断言,本来想全都写一下,但发现每一个断言里面的东西都很多,所以就先写一下我们经常使用的响应断言. 第一次在cnblog上 ...
- 【转】JMeter脚本的参数化
JMeter脚本的参数化 当你利用Badboy将你的测试脚本录制完毕后,接下来就是脚本的调试工作了.在我看来,调试应该包括有以下几个方面:1.根据测试场景对脚本进行必要的修改:2.脚本参数化:3.添加 ...
- dB2 索引相关
ALTER TABLE "XXXX"."tableA" PCTFREE 20 ; CREATE INDEX "schema"."X ...
- VS加载项目时报错 尚未配置为Web项目XXXX指定的本地IIS
网上找的几个方法都不行 最后自己解决了.首先打开该项目得csproj文件,找到<ProjectExtensions>这个标签,是在最后部分,然后把<UseIIS>True< ...
- python's seventeenth day for me 面向对象
用函数做一个简单的游戏: def Person(name,sex,hp,ad): self = {'name':name,'sex':sex,'hp':hp,'ad':ad} def attack(d ...
- 本人编写的一份前端vue面试题
说明,此题目本人自出,做过本人所在公司的前端面试题,在此共享给大家 1. 如何在vue组件中实现v-model的功能?(只需给出关键代码) 2. 简述你知道的生命周期函数和执行时机 3. 谈谈你对计算 ...
- webRTC peerconnection_client demo创建VS工程
编译了webRTC Windows源码之后,想使用编译出来的库写一个demo出来,但是又不知到怎么下手.就想通过源码中带的示例peerconnection_client和peerconnection_ ...