Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树
5 seconds
256 megabytes
standard input
standard output
Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:
- 1 l r x — increase all integers on the segment from l to r by values x;
- 2 l r — find
, where f(x) is the x-th Fibonacci number. As this number may be large, you only have to find it modulo109 + 7.
In this problem we define Fibonacci numbers as follows: f(1) = 1, f(2) = 1, f(x) = f(x - 1) + f(x - 2) for all x > 2.
Sasha is a very talented boy and he managed to perform all queries in five seconds. Will you be able to write the program that performs as well as Sasha?
The first line of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of elements in the array and the number of queries respectively.
The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).
Then follow m lines with queries descriptions. Each of them contains integers tpi, li, ri and may be xi (1 ≤ tpi ≤ 2, 1 ≤ li ≤ ri ≤ n,1 ≤ xi ≤ 109). Here tpi = 1 corresponds to the queries of the first type and tpi corresponds to the queries of the second type.
It's guaranteed that the input will contains at least one query of the second type.
For each query of the second type print the answer modulo 109 + 7.
5 4
1 1 2 1 1
2 1 5
1 2 4 2
2 2 4
2 1 5
5
7
9
Initially, array a is equal to 1, 1, 2, 1, 1.
The answer for the first query of the second type is f(1) + f(1) + f(2) + f(1) + f(1) = 1 + 1 + 1 + 1 + 1 = 5.
After the query 1 2 4 2 array a is equal to 1, 3, 4, 3, 1.
The answer for the second query of the second type is f(3) + f(4) + f(3) = 2 + 3 + 2 = 7.
The answer for the third query of the second type is f(1) + f(3) + f(4) + f(3) + f(1) = 1 + 2 + 3 + 2 + 1 = 9.
题意:f(x)为斐波那契第x项,1是更新l-r的区间f(i+x),2是求区间和;
思路:线段树维护矩阵,将每个f(x)转化为2*2的矩阵,区间更新为乘法;
需要一点小优化;
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
const int N=1e5+,M=4e6+,inf=1e9+,mod=1e9+;
struct is
{
ll a[][];
void setnum(ll aa,ll b,ll c,ll d)
{
a[][]=aa;
a[][]=b;
a[][]=c;
a[][]=d;
}
void reset()
{
for(int i=;i<=;i++)
for(int t=;t<=;t++)
a[i][t]=;
}
};
is add(is a,is b)
{
for(int i=; i<=; i++)
for(int t=; t<=; t++)
a.a[i][t]=(a.a[i][t]+b.a[i][t])%mod;
return a;
}
struct tree
{
is lazy;
is a;
}tree[N<<];
is gg;
is juzhenmul(is a,is b,ll mod)
{
int i,t,j;
is ans;
ans.reset();
for(i=;i<=;i++)
for(t=;t<=;t++)
for(j=;j<=;j++)
{
ans.a[i][t]+=(a.a[i][j]*b.a[j][t]);
ans.a[i][t]%=mod;
}
return ans;
}
is quickpow(is a,ll x,ll mod)
{
is ans;
ans.setnum(,,,);
while(x)
{
if(x&) ans=juzhenmul(ans,a,mod);
a=juzhenmul(a,a,mod);
x>>=;
}
return ans;
}
is getans(is base,ll x,ll mod)
{
return quickpow(base,x-,mod);
}
void pushup(int pos)
{
tree[pos].a=add(tree[pos<<|].a,tree[pos<<].a);
}
void pushdown(int pos)
{
if(tree[pos].lazy.a[][]!=||tree[pos].lazy.a[][]!=||tree[pos].lazy.a[][]!=||tree[pos].lazy.a[][]!=)
{
tree[pos<<].lazy=juzhenmul(tree[pos<<].lazy,tree[pos].lazy,mod);
tree[pos<<|].lazy=juzhenmul(tree[pos<<|].lazy,tree[pos].lazy,mod);
tree[pos<<].a=juzhenmul(tree[pos].lazy,tree[pos<<].a,mod);
tree[pos<<|].a=juzhenmul(tree[pos].lazy,tree[pos<<|].a,mod);
tree[pos].lazy.setnum(,,,);
}
}
void buildtree(int l,int r,int pos)
{
tree[pos].lazy.setnum(,,,);
if(l==r)
{
ll x;
scanf("%lld",&x);
tree[pos].a=getans(gg,x,mod);
return;
}
int mid=(l+r)>>;
buildtree(l,mid,pos<<);
buildtree(mid+,r,pos<<|);
pushup(pos);
}
void update(int L,int R,int l,int r,int pos,is c)
{
if(L<=l&&r<=R)
{
tree[pos].lazy=juzhenmul(c,tree[pos].lazy,mod);
tree[pos].a=juzhenmul(c,tree[pos].a,mod);
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)
update(L,R,l,mid,pos<<,c);
if(R>mid)
update(L,R,mid+,r,pos<<|,c);
pushup(pos);
}
ll query(int L,int R,int l,int r,int pos)
{
if(L<=l&&r<=R)
return tree[pos].a.a[][];
pushdown(pos);
int mid=(l+r)>>;
ll ans=;
if(L<=mid)
ans+=query(L,R,l,mid,pos<<);
if(R>mid)
ans+=query(L,R,mid+,r,pos<<|);
return ans%mod;
}
int main()
{
gg.setnum(,,,);
int n,m;
scanf("%d%d",&n,&m);
buildtree(,n,);
while(m--)
{
int flag,l,r;
ll c;
scanf("%d%d%d",&flag,&l,&r);
if(flag==)
{
scanf("%lld",&c);
update(l,r,,n,,getans(gg,c+,mod));
}
else
printf("%lld\n",query(l,r,,n,));
}
return ;
}
Codeforces Round #373 (Div. 2) E. Sasha and Array 矩阵快速幂+线段树的更多相关文章
- E. Sasha and Array 矩阵快速幂 + 线段树
E. Sasha and Array 这个题目没有特别难,需要自己仔细想想,一开始我想了一个方法,不对,而且还很复杂,然后lj提示了我一下说矩阵乘,然后再仔细想想就知道怎么写了. 这个就是直接把矩阵放 ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array 线段树维护矩阵
E. Sasha and Array 题目连接: http://codeforces.com/contest/719/problem/E Description Sasha has an array ...
- Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...
- Codeforces Round #373 (Div. 2) E. Sasha and Array
题目链接 分析:矩阵快速幂+线段树 斐波那契数列的计算是矩阵快速幂的模板题,这个也没什么很多好解释的,学了矩阵快速幂应该就知道的东西= =这道题比较巧妙的在于需要用线段树来维护矩阵,达到快速查询区间斐 ...
- Codeforces Round #539 (Div. 1) E - Sasha and a Very Easy Test 线段树
如果mod是质数就好做了,但是做除法的时候对于合数mod可能没有逆元.所以就只有存一下mod的每个质因数(最多9个)的幂,和剩下一坨与mod互质的一部分.然后就能做了.有点恶心. CODE #incl ...
- Codeforces Round #200 (Div. 1) D. Water Tree(dfs序加线段树)
思路: dfs序其实是很水的东西. 和树链剖分一样, 都是对树链的hash. 该题做法是:每次对子树全部赋值为1,对一个点赋值为0,查询子树最小值. 该题需要注意的是:当我们对一棵子树全都赋值为1的 ...
- Codeforces Round #323 (Div. 2) D 582B Once Again...(快速幂)
A[i][j]表示在循环节下标i开头j结尾的最长不减子序列,这个序列的长度为p,另外一个长度为q的序列对应的矩阵为B[i][j], 将两序列合并,新的序列对应矩阵C[i][j] = max(A[i][ ...
- Codeforces 719E [斐波那契区间操作][矩阵快速幂][线段树区间更新]
/* 题意:给定一个长度为n的序列a. 两种操作: 1.给定区间l r 加上某个数x. 2.查询区间l r sigma(fib(ai)) fib代表斐波那契数列. 思路: 1.矩阵操作,由矩阵快速幂求 ...
- Codeforces Round #373 (Div. 1)
Codeforces Round #373 (Div. 1) A. Efim and Strange Grade 题意 给一个长为\(n(n \le 2 \times 10^5)\)的小数,每次可以选 ...
随机推荐
- UVA Dividing coins
题目链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_proble ...
- CSS如何清除浮动流的多种方案
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- HBase1.2.4基于hadoop2.4搭建
1.安装JDK1.7, Hadoop2.4 2.下载 hbase 安装包 下载地址:http://apache.fayea.com/hbase/1.2.4/hbase-1.2.4-bin.tar.gz ...
- [note]克鲁斯卡尔重构树
克鲁斯卡尔重构树 又叫并查集重构树 大概在NOI2018之前还是黑科技 现在?烂大街了 主要是针对图上的对边有限制的一类问题 比如每次询问一个点u不能经过边权大于w的边能走到的第k大点权是多少 也就是 ...
- speech sdk 文字转语音
1.下载SDK包 https://www.microsoft.com/en-us/download/details.aspx?id=10121 2.直接上代码 // SpeechRecognition ...
- MD5,SHA256,时间戳获取
import hashlib # MD5加密 def jiamimd5(src): m = hashlib.md5() m.update(src.encode('UTF-8')) return m.h ...
- (4.9)SQL Server如何校验备份文件
译 SQL Server如何校验备份文件 转自:https://blog.csdn.net/tjvictor/article/details/5261666 RESTORE VERIFYONLY与 c ...
- 纯手写wcf代码,wcf入门,wcf基础教程
1.定义服务协定 =>定义接口 using System.ServiceModel; namespace WcfConsole { /// <summary> /// 定义服 ...
- Android学习笔记之AndroidManifest.xml文件解析(详解)
一.关于AndroidManifest.xml AndroidManifest.xml 是每个android程序中必须的文件.它位于整个项目的根目录,描述了package中暴露的组件(activiti ...
- Log图文详解(Log.v,Log.d,Log.i,Log.w,Log.e)
android.util.Log常用的方法有以下5个:Log.v() Log.d() Log.i() Log.w() 以及 Log.e() .根据首字母对应VERBOSE,DEBUG,INFO, WA ...