一天课下,张老板研究起了国际象棋,渴望完美的他更改了棋盘的大小,在N*N的方格棋盘放置了N个皇后,希望它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上) 
张老板把这个艰巨的任务交给了你,对于给定的N,求出有多少种合法的放置方法。

Input共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。Output共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。Sample Input

1
8
5
0

Sample Output

1
92
10

第一次看到这个题感觉很难,后来通过看视频学会了一种递归算法来解这道问题,想明白后还是很有意思的,不过递归是一种很低效的算法,提交的时候TEL了,正确的解法应该是用回溯算法,以后有时间再理解

递归算法(低效)

#include<stdio.h>
#include<string.h> int count = ;
int t; int notDanger(int row, int j, int (*arr)[])
{
int flag1, flag2, flag3, flag4, flag5;
int i, k; flag1 = flag2 = flag3 = flag4 = flag5 = ; //判断列是不是危险
for( i = ; i < t; i++ )
{
if(arr[i][j] == )
{
flag1 = ;
break;
}
} //判断左上方
for( i = row, k = j; i >= && k >= ; i--, k-- )
{
if(arr[i][k] == )
{
flag2 = ;
break;
}
} //判断左下方
for( i = row, k = j; i < t && k >= ; i++, k-- )
{
if(arr[i][k] == )
{
flag3 = ;
break;
}
} //判断右上方
for( i = row, k = j; i >= && k < t; i--, k++ )
{
if(arr[i][k] == )
{
flag4 = ;
break;
}
} //判断右下方
for( i = row, k = j; i < t && k < t; i++, k++ )
{
if(arr[i][k] == )
{
flag5 = ;
break;
}
} if(flag1 == || flag2 == || flag3 == || flag4 == || flag5 == )
return ; else
return ;
} void nQueen(int row, int n, int (*arr)[])
{
int arr2[][], i, j; for( i = ; i < n; i++ )
{
for( j = ; j < n; j++ )
{
arr2[i][j] = arr[i][j];
}
} if(row == n)
count++; else
{
//该位置没有危险
for( j = ; j < n; j++ ) //这一部分代码其实往下会产生很大的容量
{ //有时候自己会在这部分,搞混。
if(notDanger(row, j, arr))
{
for( i = ; i < n; i++ )
{
arr2[row][i] = ;
} arr2[row][j] = ; nQueen(row+, n, arr2);
}
}
}
} int main()
{
int arr[][], i, j; while(scanf("%d", &t) != EOF && t)
{
count = ; for( i = ; i < t; i++ )
{
for( j = ; j < t; j++ )
{
arr[i][j] = ;
}
} nQueen(, t, arr);
if(count == )
printf("None\n");
else
printf("%d\n", count);
} return ;
}

回溯算法

#include<stdio.h>
#include<string.h> int n,tmp;
int map[]; void DFS(int k)
{
int i,j,flag;
if(k==n+)
{
tmp++;
return;
}
else
{
for(i=;i<=n;++i)
{
map[k]=i;
flag=;
for(j=;j<k;++j)
{
if(map[j]==i||i-k==map[j]-j||i+k==map[j]+j) // 注:1、i=map[k] 2、不在同一条斜线的两点的含义是行标到对角线的的距离不相等
{
flag=;
break;
}
}
if(flag)
DFS(k+);
}
}
} int main()
{
int i,m;
int ans[];
for(n=;n<=;++n)
{
tmp=;
DFS();
ans[n]=tmp;
}
while(scanf("%d",&m),m)
{
printf("%d\n",ans[m]);
}
return ;
}

B - N皇后问题的更多相关文章

  1. 递归实现n(经典的8皇后问题)皇后的问题

    问题描述:八皇后问题是一个以国际象棋为背景的问题:如何能够在8×8的国际象棋棋盘上放置八个皇后, 使得任何一个皇后都无法直接吃掉其他的皇后?为了达到此目的,任两个皇后都不能处于同一条横行.纵行或斜线上 ...

  2. 八皇后算法的另一种实现(c#版本)

    八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...

  3. [LeetCode] N-Queens II N皇后问题之二

    Follow up for N-Queens problem. Now, instead outputting board configurations, return the total numbe ...

  4. [LeetCode] N-Queens N皇后问题

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  5. N皇后问题—初级回溯

    N皇后问题,最基础的回溯问题之一,题意简单N*N的正方形格子上放置N个皇后,任意两个皇后不能出现在同一条直线或者斜线上,求不同N对应的解. 提要:N>13时,数量庞大,初级回溯只能保证在N< ...

  6. 数据结构0103汉诺塔&八皇后

    主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...

  7. N皇后问题

    题目描述 在n×n格的棋盘上放置彼此不受攻击的n个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于再n×n的棋盘上放置n个后,任何2个皇后不妨在同一行或同 ...

  8. LeetCode:N-Queens I II(n皇后问题)

    N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no tw ...

  9. 八皇后问题_Qt_界面程序实现

    //核心代码如下 //Queen--放置皇后 #include "queue.h" queue::queue() { *; ; this->board = new bool[ ...

  10. 两个NOI题目的启迪8皇后和算24

    论出于什么原因和目的,学习C++已经有一个星期左右,从开始就在做NOI的题目,到现在也没有正式的看<Primer C++>,不过还是受益良多,毕竟C++是一种”低级的高级语言“,而且NOI ...

随机推荐

  1. 解决word自动编号出现内容空格过大的问题

    选择你需要调整的段落.右键点击.选择“调整列表缩进” 然后在弹出的窗口中,第三行的“制表符”改成“空格”即可.或者空格都不需要可以改为“不特别标注”. 当编号超过10的时候,也会有空格太大的现象,这时 ...

  2. pandas层级索引

    层级索引(hierarchical indexing) 下面创建一个Series, 在输入索引Index时,输入了由两个子list组成的list,第一个子list是外层索引,第二个list是内层索引. ...

  3. HttpURLConnection连接网页和获取数据的使用实例

    HttpURLConnection是java.net 里面自带的一个类,非常好用.虽然现在很多人用阿帕奇的HttpClient,但HttpURLConnection也是个不错的选择. 其实使用方法非常 ...

  4. 2&nbsp;时间管理和内存管理

    时间管理 uC/OS-II的时间管理是通过定时中断来实现的,该定时中断一般为10毫秒或100毫秒发生一次(这个时间片段是OS的作者推荐的,大家可以参考邵贝贝翻译的<嵌入式实时操作系统ucos-I ...

  5. Android 模拟MotionEvent事件 触发输入法

    Android 模拟MotionEvent事件 触发输入法   android输入法layoutbutton文本编辑encoding 关键词:MotionEvent,模拟按键,模拟点击事件,主动弹出输 ...

  6. Oracle设置主键自增长

    第一步:为表设置主键 第二步:新建序列 CREATE SEQUENCE SQ.SEQ_INCREASE  START WITH 12  MAXVALUE 999  MINVALUE 0 INCREME ...

  7. SaeMysql操作示例

    新浪sae的官方说明文档:http://apidoc.sinaapp.com/sae/SaeMysql.html Class SaeMysql 具体实现:http://apidoc.sinaapp.c ...

  8. 如何学习MySQL

    转自高手的帖子 1.坚持阅读官方手册,看MySQL书籍作用不会特别大:(挑选跟工作相关的内容优先阅读,例如InnoDB存储引擎,MySQL复制,查询优化) 2.阅读官方手册,同时对阅读的内容做对应的测 ...

  9. 十四课 slam&gmapping

    gmapping 根据激光数据(或者深度数据模拟的激光数据)建立地图,在turtlebot里面应用的就是深度数据模拟的激光数据.如果没有激光雷达的话可以使用Kinect. SLAM 机器人在未知环境中 ...

  10. IIS关闭Trace、OPTIONS方法

    方法(1):web.config 在<configuration>节点下添加如下代码: <system.webServer> <security> <requ ...