题目链接

BZOJ2118

题解

orz竟然是最短路

我们去\(0\)后取出最小的\(a[i]\),记为\(p\),然后考虑模\(p\)下的\(B\)

一个数\(i\)能被凑出,那么\(i + p\)也能被凑出

所以我们只需找出最小的凑出\(i\)的代价

我们如果将同余下的和看作点,那么加上一个数就相当于在点间转移的边

所以我们只需跑最短路即可求出每个\(i\)的最小代价,然后就可以计算\(Bmin\)和\(Bmax\)以内分别有多少个\(i\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 500005,maxm = 5000005;
const LL INF = 100000000000000001ll;
inline LL read(){
LL out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct node{
int u; LL d;
};
inline bool operator <(const node& a,const node& b){
return a.d > b.d;
}
inline bool operator ==(const node& a,const node& b){
return a.u == b.u && a.d == b.d;
}
struct Heap{
priority_queue<node> a,b;
void ck(){while (!b.empty() && a.top() == b.top()) a.pop(),b.pop();}
int size(){return a.size() - b.size();}
node top(){ck(); node x = a.top(); a.pop(); return x;}
void del(node x){ck(); b.push(x);}
void ins(node x){ck(); a.push(x);}
}H;
int N,a[maxn],P;
LL d[maxn]; int vis[maxn];
int h[maxn],ne;
struct EDGE{int to,nxt,w;}ed[maxm];
inline void build(int u,int v,int w){
ed[++ne] = (EDGE){v,h[u],w}; h[u] = ne;
}
void work(){
for (int i = 0; i < P; i++){
for (int j = 1; j <= N; j++)
build(i,(i + a[j]) % P,a[j]);
}
for (int i = 1; i < P; i++) d[i] = INF;
d[0] = 0; H.ins((node){0,d[0]}); vis[0] = true;
node u;
while (H.size()){
u = H.top();
Redge(u.u) if (!vis[to = ed[k].to] && d[to] > d[u.u] + ed[k].w){
if (d[to] != INF) H.del((node){to,d[to]});
d[to] = d[u.u] + ed[k].w;
H.ins((node){to,d[to]});
}
}
}
int main(){
N = read(); LL L = read(),R = read(); P = INF;
REP(i,N){
a[i] = read();
if (!a[i]) i--,N--;
}
if (!N){
if (L) puts("0");
else puts("1");
return 0;
}
REP(i,N) P = min(P,a[i]);
work();
L--;
LL ansl = 0,ansr = 0;
for (int i = 0; i < P; i++){
if (d[i] <= L){
ansl++;
ansl += (L - d[i]) / P;
}
if (d[i] <= R){
ansr++;
ansr += (R - d[i]) / P;
}
}
printf("%lld\n",ansr - ansl);
return 0;
}

BZOJ2118 墨墨的等式 【最短路】的更多相关文章

  1. 【BZOJ2118】墨墨的等式(最短路)

    [BZOJ2118]墨墨的等式(最短路) 题面 BZOJ 洛谷 题解 和跳楼机那题是一样的. 只不过走的方式从\(3\)种变成了\(n\)种而已,其他的根本没有区别了. #include<ios ...

  2. 【BZOJ2118】墨墨的等式 最短路

    [BZOJ2118]墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值 ...

  3. BZOJ2118:墨墨的等式(最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  4. BZOJ2118: 墨墨的等式(最短路 数论)

    题意 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. So ...

  5. BZOJ2118: 墨墨的等式(最短路构造/同余最短路)

    Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在 ...

  6. BZOJ2118墨墨的等式[数论 最短路建模]

    2118: 墨墨的等式 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1317  Solved: 504[Submit][Status][Discus ...

  7. Bzoj2118 墨墨的等式

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1488  Solved: 578 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+ ...

  8. bzoj 2118 墨墨的等式 - 图论最短路建模

    墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求出有多少B可以使等式存在非负整数解. Input ...

  9. 【BZOJ 2118】 2118: 墨墨的等式 (最短路)

    2118: 墨墨的等式 Description 墨墨突然对等式很感兴趣,他正在研究a1x1+a2y2+…+anxn=B存在非负整数解的条件,他要求你编写一个程序,给定N.{an}.以及B的取值范围,求 ...

随机推荐

  1. 监听浏览器返回,pushState,popstate 事件,window.history对象

    在WebApp或浏览器中,会有点击返回.后退.上一页等按钮实现自己的关闭页面.调整到指定页面.确认离开页面或执行一些其它操作的需求.可以使用 popstate 事件进行监听返回.后退.上一页操作. 一 ...

  2. ruby net/http模块使用

    ruby中的NET::HTTP:这里暂时先列出几个固定用法: 其中一,二不支持请求头设置(header取ruby默认值),只能用于基本的请求,不支持持久连接,如果您执行许多HTTP请求,则不推荐它们: ...

  3. SocketServer模块中的几种类

    BaseServer:包括服务器的核心功能与混合类的一些功能. TCPServer:基本的网络同步TCP服务器. UDPServer:基本的网络同步UDP服务器. ForkingMixIn:实现了核心 ...

  4. WebSocket 的使用

    Java 控制台程序实现类似广播功能 服务器端代码 添加 maven 依赖 <dependency> <groupId>javax.websocket</groupId& ...

  5. c/c++ 结构体传参问题

    c/c++的结构体传参可以有三种方式: 1.传递结构体变量,值传递 2.传递结构体指针,地址传递 3.传递结构体成员,可是值传递也可以是地址传递 根据代码示例: 1.传递结构体变量 #include& ...

  6. 复制MySQL数据库A到另外一个MySQL数据库B(仅仅针对innodb数据库引擎)

    方案一:(不用太大的变化my.ini文件) copy 原数据库A中的   数据库(database)  ib_logfile1  ib_logfile0   ibdata1: 关闭目的数据库B: 备份 ...

  7. 『AngularJS』ngShow

    原文 描述 ngShow指令显示或隐藏给定的基于标明ngShow属性的HTML元素.元素的显示或隐藏通过在元素上移除或添加ng-hide CSS类属性.".ng-hide"CSS类 ...

  8. python自动化之BDD框架之lettuce初识问题集

    最近在学习虫师老师编写的python自动化的书.其中讲到了BDD结构lettuce入门一章. 因为是小白,按部就班地进行操作,先不谈执行操作如何,先来讲讲遇到的几个坑,和怎么解决的: 第一坑:pyth ...

  9. CodeBlocks 3 使用设置

    使用MingW作为CB的默认编译器和wxWidgets进行编程,当然需要好好配置一番,因为mingw在windows下用起来着实没有win32原生态程序运行快,也没有他小,好处是借助wxwidgets ...

  10. Django 运行Admin 页面时出现 UnicodeDecodeError: 'gbk' codec can't decode byte XXXX解决方法

    具体报错信息 Traceback (most recent call last): File "D:\Anaconda3\lib\site-packages\django\core\hand ...