【luogu 1439 最长公共子序列】
题目描述
给出1-n的两个排列P1和P2,求它们的最长公共子序列。
输入输出格式
输入格式:
第一行是一个数n,
接下来两行,每行为n个数,为自然数1-n的一个排列。
输出格式:
一个数,即最长公共子序列的长度
输入输出样例
输入样例#1: 复制
5
3 2 1 4 5
1 2 3 4 5
输出样例#1: 复制
3
说明
【数据规模】
对于50%的数据,n≤1000
对于100%的数据,n≤100000
【题解】
①LCS->LIS
②树状数组维护nlogn LIS
#include<stdio.h>
#define max(A,B) (A=((A)>(B))?(A):(B))
#define go(i,a,b) for(int i=a;i<=b;i++)
const int N=100010;
int n,R,f[N],a[N],b[N],c[N],d[N],ans;
void Add(int x,int _){while(x<=n)max(c[x],_),x+=x&-x;}
int Max(int x){R=0;while(x)max(R,c[x]),x-=x&-x;return R;}
int main()
{
scanf("%d",&n); go(i,1,n)scanf("%d",b+i),d[b[i]]=i;
go(i,1,n)scanf("%d",a+i),a[i]=d[a[i]];
go(i,1,n)Add(a[i],max(ans,Max(a[i]-1)+1)); printf("%d\n",ans);return 0;
}//Paul_Guderian
.
【luogu 1439 最长公共子序列】的更多相关文章
- Luogu 3402 最长公共子序列(二分,最长递增子序列)
Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: ...
- luogu P3402 最长公共子序列
题目背景 DJL为了避免成为一只咸鱼,来找Johann学习怎么求最长公共子序列. 题目描述 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作 ...
- 【Luogu P1439】最长公共子序列(LCS)
Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...
- 洛谷1439:最长公共子序列(nlogn做法)
洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路 ...
- 最长公共子序列-LCS问题 (LCS与LIS在特殊条件下的转换) [洛谷1439]
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出 一个数,即最长公共子序列的长度 输入样例 5 ...
- P1439 【模板】最长公共子序列(DP)
题目描述 给出1-n的两个排列P1和P2,求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数n, 接下来两行,每行为n个数,为自然数1-n的一个排列. 输出格式: 一个数,即最长公共子 ...
- 最长公共子序列问题(LCS) 洛谷 P1439
题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...
- 2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组)
2021.12.10 P2516 [HAOI2010]最长公共子序列(动态规划+滚动数组) https://www.luogu.com.cn/problem/P2516 题意: 给定字符串 \(S\) ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
随机推荐
- symfony 数据库使用(二)
symfony可以根据数据用已经有表反向生成实体,以3.3.*为例: php bin/console doctrine:mapping:import --force AppBundle xml 从现有 ...
- CentOS 同步时间的方法
与时间服务器上的时间同步的方法 1. 安装ntpdate工具 # yum -y install ntp ntpdate 2. 设置系统时间与网络时间同步 # ntpdate cn.pool.ntp ...
- MySQL学习路线图
- django之单表查询
一.创建表 1.创建模型: 创建名为book的app,在book下的models.py中创建模型: from django.db import models # Create your models ...
- 005---json & pickle
json & pickle 什么是序列化 序列化是指把内存里的数据类型转变成字符串,以便使其能存储在硬盘和网络传输.因为只能接收bytes类型. 为什么要序列化 持久化存储 分类 - json ...
- Java8新特性(三)——Optional类、接口方法与新时间日期API
一.Optional容器类 这是一个可以为null的容器对象.如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象. 查看结构图可以看到有如下常用方法: of(T)—— ...
- kylin实战系列(一)
kylin实战系列(一) 把之前kylin的实践小结一下,以备以后查看.
- RelativeSource设定绑定方向
<Window x:Class="Yingbao.Chapter2.RelativeEx.AppWin" xmlns="http://schemas.microso ...
- 初步学习pg_control文件之七
接前文 初步学习pg_control文件之六 看 pg_control_version 以PostgreSQL9.1.1为了,其HISTORY文件中有如下的内容: Release Release ...
- stm32--FatFs移植(SPIFlash)
前言 硬件: 单片机:stm32f072CB,sram大小16k.(其他单片机只要sram>8k即可通用) SPIFlash:W25Q128FV,16Mbyte,单次擦除最小4k. 程序使用Ke ...