w

题目背景

\(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\)。小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了。

于是,\(\frac 14\)只好来问你,这道题是这样的:

题目描述

有一棵\(n\)个节点的树,每条边长度为\(1\),颜色为黑或白。

可以执行若干次如下操作:选择一条简单路径,反转路径上所有边的颜色。

对于某些边,要求在操作结束时为某一种颜色。

给定每条边的初始颜色,求最小操作数,以及满足操作数最小时,最小的操作路径长度和。

输入输出格式

输入格式

第一行,一个正整数\(n\)。

接下来\(n-1\)行,每行四个整数\(a,b,c,d\):

  • 树中有一条边连接\(a\)和\(b\)。

  • \(c=0,1\)表示初始颜色为白色、黑色。

  • \(d=0,1,2\)表示最终要求为白色、要求为黑色、没有要求。

输出格式

输出一行,两个整数,表示最小操作数、操作数最小时的最小路径长度和。

数据范围

\(n\in [1,10^5]\),\(a,b\in [1,n]\),\(c\in \{0,1\}\),\(d\in \{0,1,2\}\)

\(\text{Subtask}\) 分值 \(n\le\) 其他限制
\(1\) \(18\) \(20\)
\(2\) \(25\) \(10^3\) 最多\(10\)条边使得\(d=2\)
\(3\) \(23\) \(10^5\) 保证\(a+1=b\)
\(4\) \(1\) \(10^5\) 保证\(d=2\)
\(5\) \(13\) \(10^5\) 保证\(d\not=2\)
\(6\) \(20\) \(10^5\)

又是一道神题,先形式化的说一说做法吧。


有一个容易发现的小性质:每条边最多只需要翻转一次。

然后我们考虑翻转了边集\(E\),边集\(E\)的操作数为边集中连接的点的奇数度数点的个数除2,路径长度为边数。我们需要在最小化前者的基础上最小化后者。

可以把代价直接压进去做树形\(DP\),考虑每个子树的最小化代价。

子树划分为两个状态,代表头顶上的点是否翻转。

具体的说\(dp_{i,0/1}\)代表以\(i\)为根的子树具有最优代价(\(c_1,c_2\))时是否(0/1)翻转头顶的边,\(c_1\)为奇数点个数,\(c_2\)为翻转路径长度。

这里边,点的代价均下放。


考虑儿子集合\(\{v\}\)如何被转移。

\(w_1\)代表已经转移的集合\(\{v'\}\)有一条向\(i\)伸出的翻转边的最小代价,\(w_2\)代表没有伸出翻转边

\(w_1=min(w_1+dp_{v,0},w_2+dp_{v,1})\)

\(w_2=min(w_1+dp_{v,1},w_2+dp_{v,0})\)

也就是拿子树做了一个递推。

初始化:\(w_1=(inf,inf),w_2=(0,0)\)


考虑如何用\(w_1,w_2\)更新\(i\)的答案。

如果\(i\)的头顶一定需要翻转

\(dp_{i,0}=(inf,inf)\)

\(dp_{i,1}=min((w_1.c_1,w_1.c_2+1),(w_2.c_1+1,w_2.c_2+1))\)

分别代表 翻转向上延伸,奇数点不变,路径长度+1 和 独立翻转出去,奇数点与路径长均+1

如果\(i\)的头顶一定不需要翻转

\(dp_{i,0}=min((w_1.c_1+1,w_1.c2),w_2)\)

分别代表\(i\)成为奇数点,路径不变 和 直接没操作

\(dp_{i,1}=(inf,inf)\)

如果可以翻转可以不翻转,就做两个有决策的

然后就没了


考虑可以从这个题目得到什么收获。

  1. 可以把最优状态下的最优压在一起拿二元组做
  2. 首先要认真研究性质,作为划分状态的依据
  3. 与路径有关的状态划分基于是否从头顶伸出一条边

Code:

#include <cstdio>
const int N=1e5+10;
const int inf=0x3f3f3f3f;
int head[N],to[N<<1],Next[N<<1],edge[N<<1],cnt,n;
void add(int u,int v,int w)
{
to[++cnt]=v,edge[cnt]=w,Next[cnt]=head[u],head[u]=cnt;
}
struct node
{
int c1,c2;
node(){}
node(int c1,int c2){this->c1=c1,this->c2=c2;}
node friend operator +(node n1,node n2)
{
node n3(n1.c1+n2.c1,n1.c2+n2.c2);
return n3;
}
bool friend operator <(node n1,node n2)
{
return n1.c1==n2.c1?n1.c2<n2.c2:n1.c1<n2.c1;
}
}dp[N][2];
node min(node n1,node n2){return n1<n2?n1:n2;}
void dfs(int now,int fa,int typ)
{
node w1(inf,inf),w2(0,0),nx1,nx2;
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
if(v==fa) continue;
dfs(v,now,edge[i]);
nx1=min(w1+dp[v][0],w2+dp[v][1]);
nx2=min(w1+dp[v][1],w2+dp[v][0]);
w1=nx1,w2=nx2;
}
if(typ==1||typ==2)
dp[now][1]=min(node(w1.c1,w1.c2+1),node(w2.c1+1,w2.c2+1));
else
dp[now][1]=node(inf,inf);
if(typ==0||typ==2)
dp[now][0]=min(node(w1.c1+1,w1.c2),w2);
else
dp[now][0]=node(inf,inf);
}
int main()
{
scanf("%d",&n);
for(int a,b,c,d,i=1;i<n;i++)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
c=d==2?d:c!=d;//0不翻转,1翻转,2随便
add(a,b,c),add(b,a,c);
}
dfs(1,0,2);
printf("%d %d\n",dp[1][0].c1>>1,dp[1][0].c2);
return 0;
}

2018.10.12

雅礼集训 Day3 T3 w 解题报告的更多相关文章

  1. 雅礼集训 Day1 T3 画作 解题报告

    画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...

  2. 雅礼集训 Day3 T2 v 解题报告

    v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...

  3. 雅礼集训 Day5 T3 题 解题报告

    题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...

  4. 雅礼集训 Day3 T2 u 解题报告

    u 题目背景 \(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了. ...

  5. 雅礼集训 Day2 T3 联盟 解题报告

    联盟 题目描述 \(\text{G}\) 国周边的 \(n\) 个小国家构成一个联盟以抵御 \(\text{G}\) 国入侵, 为互相支援,他们建立了\(n−1\) 条双向通路, 使得任意两个国家可以 ...

  6. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

  7. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  8. 雅礼集训 Day6 T2 Equation 解题报告

    Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...

  9. 雅礼集训 Day7 T1 Equation 解题报告

    Reverse 题目背景 小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\).现在小\(\text{G}\)可以进行若干次以 ...

随机推荐

  1. 微信小程序scroll-viwe遇到的问题

    1.当使用scroll-view的时候里面不可以使用某些标签 2.当使用scroll-view的时候会出现,子元素中滑动的时候会出现滚动的情况,我遇到的是因为view设置了高度和行高,一旦设置了这个, ...

  2. Mysql错误积累001-load data导入文件数据出现1290错误

    错误出现情景 在cmd中使用mysql命令,学生信息表添加数据.使用load data方式简单批量导入数据. 准备好文本数据: xueshengxinxi.txt 文件  数据之间以tab键进行分割 ...

  3. [Cracking the Coding Interview] 4.3 List of Depths

    Given a binary tree, design an algorithm which creates a linked list of all the nodes at each depth. ...

  4. 【转】odoo11新功能及绿色版汇总

    昆山-Jeffery 11:34:00 ,odoo11 新功能: 评论:看到截图,感觉美工上又有所提高 官方的发布说明:https://www.odoo.com/nl_NL/page/odoo-11- ...

  5. Linq To Excel使用简介二

    目录: 1.常用方法介绍 2.查询符合条件的数据 3.手动添加映射 4.其他用法   1.常用方法介绍         里面有一些常见的方法,如下: Worksheet 获得工作表中的数据 Works ...

  6. CSS里一个奇怪的属性

    事情是这样的,在一个手机界面的制作中,我发现按钮点击后总会出现一个边框,于是开始搜索解决方案.搜到的解决方案是这样的. a:focus,input:focus{ -webkit-tap-highlig ...

  7. Android Google Maps 监听地图缩放

    接上篇.http://www.cnblogs.com/maomishen/p/3556297.html 由于公司项目要求,需要对google map监听地图的缩放(zoom)来进行一些操作. 但是在网 ...

  8. js字符编码笔记

    一.  什么是unicode? ascii码能表示的字符非常有限(128个字符),这对英文来说足够了,但是对法文.中文.土耳奇文等文字则远远不够,于是就产生了新的编码规则-unicode,unicod ...

  9. (干货分享)mac python+appium环境搭建

    因为mac本自带python2.x(不建议卸载,因为本本本身有很多依赖与此),所以装python3的过程极其坎坷,勉强装好后也总是各种报错.这次装appium环境,直接把原来的python3卸了,用h ...

  10. Windows Server 2008 R2(x64) IIS7+PHP5(FastCGI)环境搭建

    相关软件下载: 1.PHP下载地址: http://windows.php.net/downloads/releases/php-5.4.4-nts-Win32-VC9-x86.zip 如果是win2 ...