题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值。并把它分解质因数。

题解:乱搞

卡点:1.忘记取模

C++ Code:

#include<cstdio>
#include<cmath>
using namespace std;
long long n,f[50]={1,1,1,0};
int main(){
scanf("%lld",&n);
for (int i=3;i<=n;i++)f[i]=(f[i-1]+f[i-2])%2147483648;
long long i=2,tmp=f[n];
printf("%lld=",f[n]);
while (1){
while (tmp%i==0){
if (tmp!=f[n])putchar('*');
printf("%lld",i);
tmp=tmp/i;
}
i++;
double o=tmp;
if (i>((long long)(sqrt(o))+1))break;
}
if (tmp!=1){
if (tmp!=f[n])putchar('*');
printf("%lld",tmp);
}
return 0;
}

  

[洛谷P2626]斐波那契数列(升级版)的更多相关文章

  1. 洛谷——P2626 斐波那契数列(升级版)

    P2626 斐波那契数列(升级版) 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ ...

  2. 洛谷——P2626 斐波那契数列(升级版)矩阵

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  3. 洛谷 P2626 斐波那契数列(升级版)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  4. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  5. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  6. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  7. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  8. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  9. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

随机推荐

  1. JS高级. 04 增删改查面向对象版歌曲管理、递归、

    增 数组.push() 删 数组.splice(开始删除索引,删除几个) 在当前对象中调用当前对象的方法中和属性,必须用this调用 nodeType判断节点类型 节点.nodeType ==  1: ...

  2. 深度解析JQuery Dom元素操作技巧

    深度解析JQuery Dom元素操作技巧 DOM是一种与浏览器.平台.语言无关的接口,使用该接口可以轻松访问页面中所有的标准组件,这篇文章给大家介绍了JQuery dom元素操作方法,写的十分的全面细 ...

  3. 修改二维码生成插件jquery.qrcode.js支持加入自定义LOGO

    1,将jquery.qrcode.min.js和jquery添加到您的网页中 <script src="jquery.min.js"></script> & ...

  4. Python基于jieba的中文词云

    今日学习了python的词云技术 from os import path from wordcloud import WordCloud import matplotlib.pyplot as plt ...

  5. 多线程编程之Apue3rd_Chapter11之互斥锁_读写锁_自旋锁

    学习了apue3rd的第11章,主要讲的是多线程编程.因为线程共享进程的资源比如堆和全局变量,多线程编程最重要的是,使用各种锁进行线程同步. 线程编程首先要学习的三个函数如下: #include &l ...

  6. C++代码理解 (强制指针转换)

    #include<iostream> using namespace std; class A { public: A() { a=; b=; c=; f=; } private: int ...

  7. P1189 SEARCH(逃跑的拉尔夫)

    P1189 SEARCH 题目描述 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆车,但他没想到的是那辆车属于警察局,并且车上装有用于发射车子移动路线的装置. 那个装置太旧了,以至于只能发射关于那辆车的移 ...

  8. EF报错“EntityValidationErrors”

          在使用EF更新实体的时候报错,显示界面如下:       点击查看详情:        在查看详细的窗体中,EntityValidationErrors里面的也看不到具体的错误原因.在网上 ...

  9. [Linux] 服务器镜像定时备份解决方案 crontab+rsync+flock

    两台服务器定时同步文件解决方案: 环境: 主机:192.168.1.1 镜像机:192.168.1.2 需要将主机内容备份至镜像机(假设用户都为root) 备份内容为 /export 目录下所有内容至 ...

  10. 解决:Unable to execute dex: GC overhead limit exceeded

    转自http://blog.sina.com.cn/s/blog_6e334dc70101hnug.html Android打包时下面的错误: Unable to execute dex: GC ov ...