题目大意:请你求出第$n$个斐波那契数列的数$mod 2^{31}$之后的值。并把它分解质因数。

题解:乱搞

卡点:1.忘记取模

C++ Code:

#include<cstdio>
#include<cmath>
using namespace std;
long long n,f[50]={1,1,1,0};
int main(){
scanf("%lld",&n);
for (int i=3;i<=n;i++)f[i]=(f[i-1]+f[i-2])%2147483648;
long long i=2,tmp=f[n];
printf("%lld=",f[n]);
while (1){
while (tmp%i==0){
if (tmp!=f[n])putchar('*');
printf("%lld",i);
tmp=tmp/i;
}
i++;
double o=tmp;
if (i>((long long)(sqrt(o))+1))break;
}
if (tmp!=1){
if (tmp!=f[n])putchar('*');
printf("%lld",tmp);
}
return 0;
}

  

[洛谷P2626]斐波那契数列(升级版)的更多相关文章

  1. 洛谷——P2626 斐波那契数列(升级版)

    P2626 斐波那契数列(升级版) 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ ...

  2. 洛谷——P2626 斐波那契数列(升级版)矩阵

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  3. 洛谷 P2626 斐波那契数列(升级版)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 ...

  4. 洛谷P1962 斐波那契数列【矩阵运算】

    洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...

  5. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  6. 洛谷——P1962 斐波那契数列

    P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...

  7. 洛谷—— P1962 斐波那契数列

    https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...

  8. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  9. 洛谷P1962 斐波那契数列题解

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

随机推荐

  1. python计算MD5

    python有自带的MD5模块hashlib,用起来简单很多.Python Hashlib模块的使用说明 http://docs.python.org/2/library/hashlib.htmlfd ...

  2. scala成长之路(4)compaion object——伴生对象的使用

    虽然java一直声称自己是完全面向对象的语言,但一直以来都被很多人所质疑,其中java的静态成员函数就是主要的“罪魁祸首”.由于java中保留了静态方法的调用,导致其编程模式依然有过程式编程的可能,尤 ...

  3. eclipse 右键没有Build Path

    如果Project Explorer右键没有build pathWindow ->show view 选择package explorer 参考https://blog.csdn.net/cod ...

  4. Kubernetes-DNS

    Kubernetes提供的虚拟DNS服务名为skydns,由四个组件组成: etcd:DNS存储 kube2sky:将Kubernetes Master中的Service(服务)注册到etcd sky ...

  5. R语言学习笔记(十七):data.table包中melt与dcast函数的使用

    melt函数可以将宽数据转化为长数据 dcast函数可以将长数据转化为宽数据 > DT = fread("melt_default.csv") > DT family_ ...

  6. Java——static关键字---18.09.27

    static表示“全局”或者“静态”的意思,用来修饰成员变量和成员方法,也可以形成静态static代码块,但在Java语言中没有全局变量的概念. static关键字主要有两种作用: 一.为某特定数据类 ...

  7. ArrayList底层原理

    ArrayList底层采用数组实现,访问特别快,它可以根据索引下标快速找到元素.但添加插入删除等写操作效率低,因为涉及到内存数据复制转移. ArrayList对象初始化时,无参数构造器默认容量为10, ...

  8. 使用localStorage,sessionStorage,cookie等存储

    Web 存储 API 提供了 sessionStorage (会话存储) 和 localStorage(本地存储)两个存储对象来对网页的数据进行添加.删除.修改.查询操作. 特点: localStor ...

  9. c++实验3类和对象

     实 验 3: part 1:验证 part 2:graph #include <iostream> #include "graph.h" using namespac ...

  10. 一步一步构建手机WebApp开发——页面布局篇

    继上一篇:一步一步构建手机WebApp开发——环境搭建篇过后,我相信很多朋友都想看看实战案例,这一次的教程是页面布局篇,先上图: 如上图所示,此篇教程便是教初学者如何快速布局这样的页面.废话少说,直接 ...