描述

你一定玩过八数码游戏,它实际上是在一个3*3的网格中进行的,1个空格和1~8这8个数字恰好不重不漏地分布在这3*3的网格中。
例如:
5 2 8
1 3 _
4 6 7
在游戏过程中,可以把空格与其上、下、左、右四个方向之一的数字交换(如果存在)。
例如在上例中,空格可与左、上、下面的数字交换,分别变成:
5 2 8       5 2 _      5 2 8
1 _ 3       1 3 8      1 3 7
4 6 7       4 6 7      4 6 _

奇数码游戏是它的一个扩展,在一个n*n的网格中进行,其中n为奇数,1个空格和1~n*n-1这n*n-1个数恰好不重不漏地分布在n*n的网格中。
空格移动的规则与八数码游戏相同,实际上,八数码就是一个n=3的奇数码游戏。

现在给定两个奇数码游戏的局面,请判断是否存在一种移动空格的方式,使得其中一个局面可以变化到另一个局面。

输入格式

多组数据,对于每组数据:
第1行一个整数n,n<500,n为奇数。
接下来n行每行n个整数,表示第一个局面。
接下来n行每行n个整数,表示第二个局面。
局面中每个整数都是0~n*n-1之一,其中用0代表空格,其余数值与奇数码游戏中的意义相同,保证这些整数的分布不重不漏。

输出格式

对于每组数据,若两个局面可达,输出TAK,否则输出NIE。

样例输入

3 1 2 3 0 4 6 7 5 8 1 2 3 4 5 6 7 8 0 1 0 0

样例输出

TAK TAK

 #include<cstdio>
//#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
//#include<queue>
//#include<set>
#define INF 0x3f3f3f3f
#define N 250005
#define re register
#define Ii inline int
#define Il inline long long
#define Iv inline void
#define Ib inline bool
#define Id inline double
#define ll long long
#define Fill(a,b) memset(a,b,sizeof(a))
#define R(a,b,c) for(register int a=b;a<=c;++a)
#define nR(a,b,c) for(register int a=b;a>=c;--a)
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define Cmin(a,b) ((a)=(a)<(b)?(a):(b))
#define Cmax(a,b) ((a)=(a)>(b)?(a):(b))
#define D_e(x) printf("\n&__ %d __&\n",x)
#define D_e_Line printf("-----------------\n")
#define D_e_Matrix for(re int i=1;i<=n;++i){for(re int j=1;j<=m;++j)printf("%d ",g[i][j]);putchar('\n');}
using namespace std;
// The Code Below Is Bingoyes's Function Forest.
Ii read(){
int s=,f=;char c;
for(c=getchar();c>''||c<'';c=getchar())if(c=='-')f=-;
while(c>=''&&c<='')s=s*+(c^''),c=getchar();
return s*f;
}
Iv print(ll x){
if(x<)putchar('-'),x=-x;
if(x>)print(x/);
putchar(x%^'');
}
/*
Iv Floyd(){
R(k,1,n)
R(i,1,n)
if(i!=k&&dis[i][k]!=INF)
R(j,1,n)
if(j!=k&&j!=i&&dis[k][j]!=INF)
Cmin(dis[i][j],dis[i][k]+dis[k][j]);
}
Iv Dijkstra(int st){
priority_queue<int>q;
R(i,1,n)dis[i]=INF;
dis[st]=0,q.push((nod){st,0});
while(!q.empty()){
int u=q.top().x,w=q.top().w;q.pop();
if(w!=dis[u])continue;
for(re int i=head[u];i;i=e[i].nxt){
int v=e[i].pre;
if(dis[v]>dis[u]+e[i].w)
dis[v]=dis[u]+e[i].w,q.push((nod){v,dis[v]});
}
}
}
Iv Count_Sort(int arr[]){
int k=0;
R(i,1,n)
++tot[arr[i]],Cmax(mx,a[i]);
R(j,0,mx)
while(tot[j])
arr[++k]=j,--tot[j];
}
Iv Merge_Sort(int arr[],int left,int right,int &sum){
if(left>=right)return;
int mid=left+right>>1;
Merge_Sort(arr,left,mid,sum),Merge_Sort(arr,mid+1,right,sum);
int i=left,j=mid+1,k=left;
while(i<=mid&&j<=right)
arr[i]<=arr[j]?
tmp[k++]=arr[i++]:
tmp[k++]=arr[j++],sum+=mid-i+1;//Sum Is Used To Count The Reverse Alignment
while(i<=mid)tmp[k++]=arr[i++];
while(j<=right)tmp[k++]=arr[j++];
R(i,left,right)arr[i]=tmp[i];
}
Iv Bucket_Sort(int a[],int left,int right){
int mx=0;
R(i,left,right)
Cmax(mx,a[i]),++tot[a[i]];
++mx;
while(mx--)
while(tot[mx]--)
a[right--]=mx;
}
*/
int n,m,a[N],tmp[N];
Iv Merge_Sort(int arr[],int left,int right,int &sum){
if(left>=right)return;
int mid=left+right>>;
Merge_Sort(arr,left,mid,sum),Merge_Sort(arr,mid+,right,sum);
int i=left,j=mid+,k=left;
while(i<=mid&&j<=right)
(arr[i]<=arr[j])?
tmp[k++]=arr[i++]:
(tmp[k++]=arr[j++],sum+=mid-i+);//Sum Is Used To Count The Reverse Alignment
while(i<=mid)tmp[k++]=arr[i++];
while(j<=right)tmp[k++]=arr[j++];
R(i,left,right)arr[i]=tmp[i];
}
#define PutTAK printf("TAK\n")
#define PutNIE printf("NIE\n")
int main(){
int n;
while(scanf("%d",&n)!=EOF){
int sum_start=,sum_end=;
n*=n;
if(!n)
PutNIE;
//Judge Case Of n=0 Specially
if(n==){
(read()==read())?
PutTAK:
PutNIE;
continue;
} //Judge Case Of n=1 Specially
int cnt_num=;
R(i,,n){
int num=read();
if(num)
a[++cnt_num]=num;
}
Merge_Sort(a,,cnt_num,sum_start);
cnt_num=;
R(i,,n){
int num=read();
if(num)
a[++cnt_num]=num;
}
Merge_Sort(a,,cnt_num,sum_end);
((sum_start&)==(sum_end&))?
PutTAK:
PutNIE;
}
return ;
}
/*
Note:
Error:
*/

Odd number problem的更多相关文章

  1. Buge's Fibonacci Number Problem

    Buge's Fibonacci Number Problem Description snowingsea is having Buge’s discrete mathematics lesson, ...

  2. odd number、 even number

    odd number 奇数 even number 偶数

  3. 《高性能javascript》 --- in case of odd number of items(奇怪的条目的数量)

    不知道是做着故意放的还是什么原因.总之运行后就会出现问题(奇怪的条目的数量) function merge(left, right){ var result = []; while (left.len ...

  4. shiro : java.lang.IllegalArgumentException: Odd number of characters.

    shiro使用的时候: java.lang.IllegalArgumentException: Odd number of characters.    at org.apache.shiro.cod ...

  5. 1. 找出数组中的单身狗OddOccurrencesInArray Find value that occurs in odd number of elements.

    找出数组中的单身狗: 1. OddOccurrencesInArray Find value that occurs in odd number of elements. A non-empty ze ...

  6. POJ 1350 Cabric Number Problem (模拟)

    题目链接 Description If we input a number formed by 4 digits and these digits are not all of one same va ...

  7. 【HDOJ】3509 Buge's Fibonacci Number Problem

    快速矩阵幂,系数矩阵由多个二项分布组成.第1列是(0,(a+b)^k)第2列是(0,(a+b)^(k-1),0)第3列是(0,(a+b)^(k-2),0,0)以此类推. /* 3509 */ #inc ...

  8. PERFECT NUMBER PROBLEM(思维)

     题目链接:https://nanti.jisuanke.com/t/38220 题目大意:这道题让我们判断给定数字是否为完美数字,并给来完美数字的定义,就是一个整数等于除其自身之外的所有的因子之和. ...

  9. 2106 Problem F Shuffling Along 中石油-未提交-->已提交

    题目描述 Most of you have played card games (and if you haven’t, why not???) in which the deck of cards ...

随机推荐

  1. 633. Sum of Square Numbers 是否由两个完全平方数构成

    [抄题]: Given a non-negative integer c, your task is to decide whether there're two integers a and b s ...

  2. SparkR 读取数据& Spark运行的配置

    1.本地LOCAL环境安装Spark并试运行配置(在Ubuntu系统下例子) # 打开文件配置环境变量: JAVA,SCALA,SPARK,HADOOP,SBT gedit /etc/profile ...

  3. 数据预处理 center&scale&box-cox

    http://stackoverflow.com/questions/33944129/python-library-for-data-scaling-centering-and-box-cox-tr ...

  4. poj 1611 The Suspects(第一道并查集)

    题意: 有N个学生,编号为0-n-1,现在0号学生感染了非典,凡是和0在一个社团的人就会感染, 并且这些人如果还参加了别的社团,他所在的社团照样全部感染,社团个数为m,求感染的人数. 输入: n代表人 ...

  5. Linux基础-工作中经常使用到的linux 命令

     linux 常用命令 (1)命令ls——列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的“隐藏”文件 ls a* 列出当前目录下以字母a开头的所有文件 ls -l *.d ...

  6. Codeforces 12D Ball(线段树)

    N ladies attend the ball in the King's palace. Every lady can be described with three values: beauty ...

  7. java并发机制的底层实现原理

    volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的"可见性".可见性是说当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值. vola ...

  8. [raspberry p3] suse wifi驱动加载

    问题 raspberry pi3安装后发现wifi 启动不了, brcmf_sdio加载失败了,return error code为-110 处理方法 打开 /etc/dracut.conf.d/ra ...

  9. 客户端 post ,get 访问服务器

    private void sendReuestExpansion() { HttpRequest<T> req = this; HttpWebRequest request; try { ...

  10. 13本热门书籍免费送!(Python、SpingBoot、Entity Framework、Ionic、MySQL、深度学习、小程序开发等)

    七月第一周,网易云社区联合清华大学出版社为大家送出13本数据分析以及移动开发的书籍(Python.SpingBoot.Entity Framework.Ionic.MySQL.深度学习.小程序开发等) ...