题面

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1

1 3 10

2 4 20

2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题解

翻译一下:有N头牛,ML个关系1,MD个关系2

对于关系1 a b c 而言 指 a牛和b牛之间的距离不能够超过c

对于关系2 a b d 而言 指 a牛和b牛之间的距离至少为d

求出1和N的最短距离,如果无解输出-1,距离可以无限大输出-2

题解:

差分约束

关系1而言直接建边

关系2而言 Xb-Xa>=d 变为 Xa-Xa<=-d

建边

然后SPFA求解

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF 100000000
#define MAX 1100
#define MAXL 50000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int v,next,w;
}e[MAXL];
int h[MAX],cnt=1;
int dis[MAX];
int Count[MAX];
bool vis[MAX];
int N,Ma,Mb;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
bool SPFA()
{
for(int i=1;i<=N;++i)dis[i]=INF;
for(int i=1;i<=N;++i)Count[i]=0;
for(int i=1;i<=N;++i)vis[i]=false;
dis[1]=0;
queue<int> Q;
while(!Q.empty())Q.pop();
Q.push(1);
while(!Q.empty())
{
int u=Q.front();Q.pop();
vis[u]=false;
if(Count[u]>=N)return false;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v])
{
vis[v]=true;
Q.push(v);
Count[v]++;
}
}
}
}
return true;
}
int main()
{
N=read();Ma=read();Mb=read();
for(int i=1;i<=Ma;++i)
{
int a=read(),b=read(),c=read();
Add(a,b,c);
}
for(int i=1;i<=Mb;++i)
{
int a=read(),b=read(),c=read();
Add(b,a,-c);
}
if(!SPFA())//存在负环
printf("%d\n",-1);
else
if(dis[N]==INF)//可以无限大
printf("%d\n",-2);
else
printf("%d\n",dis[N]);
return 0;
}

POJ 3167 Layout(差分约束)的更多相关文章

  1. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  6. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  7. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  8. POJ——3169Layout(差分约束)

    POJ——3169Layout Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14702   Accepted ...

  9. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

随机推荐

  1. python配置apache的web服务器方法(python的CGI配置)

    先大概介绍一下:Python CGI编程 什么是CGI CGI 目前由NCSA维护,NCSA定义CGI如下: CGI(Common Gateway Interface),通用网关接口,它是一段程序,运 ...

  2. 8、flask之flask-script组件

    Flask Script扩展提供向Flask插入外部脚本的功能,包括运行一个开发用的服务器,一个定制的Python shell,设置数据库的脚本,cronjobs,及其他运行在web应用之外的命令行任 ...

  3. lasy load图片的实现

    无意中看到了这篇关于使用LQIP(Low Quality Image Placeholders) 原文链接,方案实现图片加载优化方案.在此实践一把. 1. 方案实现 页面初始化时,img元素初始化时, ...

  4. Java数字签名——RSA算法

    数字签名:带有密钥(公钥,私钥)的消息摘要算法. 验证数据的完整性,认证数据的来源,抗否性 OSI参考模型 私钥签名,公钥验证 签名算法:RSA,DSA,ECDSA 算法1 :RSA MD,SHA两类 ...

  5. 危化品速查APP--Android Project

    开发环境 Android studio 2.3.1 功能描述 集成多种查询方式,查看本地数据库中危险化学品的信息: 按照中文拼音和英文首字母,对化学品进行查询: 按照UN号或者CAS号查询相应的化学品 ...

  6. ZOJ - 2477 dfs [kuangbin带你飞]专题二

    注意输入的处理,旋转操作打表.递增枚举可能步数,作为限制方便找到最短路. AC代码:90ms #include<cstdio> #include<cstring> char m ...

  7. Spring 框架系列之事务管理

    1.事务回顾 (1).什么是事务: 事务是逻辑上的一组操作,组成这组操作的各个逻辑单元,要么一起成功,要么一起失败. (2).事务特性(ACID) 原子性 :强调事务的不可分割 一致性 :事务的执行的 ...

  8. 特殊权限SUIG、SGID、SBIT

    一.SetUID与SGID 只能用于二进制程序 执行者需要有该二进制程序的x权限 执行具有SUID权限的二进制程序,那么执行者将具有该二进制程序所有者的权限. 举例来说,/etc/passwd文件的权 ...

  9. URL末尾处的斜杠“/”

    在输入网址的时候,比如输入"http://www.xxx.com/",此URL中末尾的斜杠是至关重要的.因为在这种情况下,浏览器能安全的添加斜杠.而像"http://ww ...

  10. 慢慢来写SpringMVC基本项目

    首先新建一个maven项目. 这里选用webapp的.在点击next弹出的界面的groupID和artifactID自己定义憋.好了,这个第一步完成.创建完可能会有个红叉在项目上, 这个只需要在pom ...