题面

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1

1 3 10

2 4 20

2 3 3

Sample Output

27

Hint

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题解

翻译一下:有N头牛,ML个关系1,MD个关系2

对于关系1 a b c 而言 指 a牛和b牛之间的距离不能够超过c

对于关系2 a b d 而言 指 a牛和b牛之间的距离至少为d

求出1和N的最短距离,如果无解输出-1,距离可以无限大输出-2

题解:

差分约束

关系1而言直接建边

关系2而言 Xb-Xa>=d 变为 Xa-Xa<=-d

建边

然后SPFA求解

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
using namespace std;
#define INF 100000000
#define MAX 1100
#define MAXL 50000
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int v,next,w;
}e[MAXL];
int h[MAX],cnt=1;
int dis[MAX];
int Count[MAX];
bool vis[MAX];
int N,Ma,Mb;
inline void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};
h[u]=cnt++;
}
bool SPFA()
{
for(int i=1;i<=N;++i)dis[i]=INF;
for(int i=1;i<=N;++i)Count[i]=0;
for(int i=1;i<=N;++i)vis[i]=false;
dis[1]=0;
queue<int> Q;
while(!Q.empty())Q.pop();
Q.push(1);
while(!Q.empty())
{
int u=Q.front();Q.pop();
vis[u]=false;
if(Count[u]>=N)return false;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v])
{
vis[v]=true;
Q.push(v);
Count[v]++;
}
}
}
}
return true;
}
int main()
{
N=read();Ma=read();Mb=read();
for(int i=1;i<=Ma;++i)
{
int a=read(),b=read(),c=read();
Add(a,b,c);
}
for(int i=1;i<=Mb;++i)
{
int a=read(),b=read(),c=read();
Add(b,a,-c);
}
if(!SPFA())//存在负环
printf("%d\n",-1);
else
if(dis[N]==INF)//可以无限大
printf("%d\n",-2);
else
printf("%d\n",dis[N]);
return 0;
}

POJ 3167 Layout(差分约束)的更多相关文章

  1. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  2. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  3. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  4. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  5. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  6. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  7. ShortestPath:Layout(POJ 3169)(差分约束的应用)

                布局 题目大意:有N头牛,编号1-N,按编号排成一排准备吃东西,有些牛的关系比较好,所以希望他们不超过一定的距离,也有一些牛的关系很不好,所以希望彼此之间要满足某个关系,牛可以 ...

  8. POJ——3169Layout(差分约束)

    POJ——3169Layout Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14702   Accepted ...

  9. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

随机推荐

  1. laravel框架学习-缓存,事件

    缓存配置:app/config/cache.php   缓存:     增加缓存项: Cache::put( 'key', 'value', $Cachetime );     在缓存中增加一个不存在 ...

  2. PHPUnit-附录 C. XML 配置文件

    [http://www.phpunit.cn/manual/5.7/zh_cn/appendixes.configuration.html] PHPUnit <phpunit> 元素的属性 ...

  3. iOS 开发 atomic 与 nonatomic 区别

    atomic :  变量默认是有该有属性的,这个属性是为了保证在多线程的情况下,编译器会自动生成一些互斥加锁的代码,避免该变量的读写不同步的问题. nonatomic  : 如果该对象无需考虑多线程的 ...

  4. Inspinia_admin-V2.3原版(英文)

    Inspinia_admin-V2.3原版(英文) Inspinia_admin-V2.3 BootStrap原版(英文) 原版是老外开发的,结果 国内某人翻译成中文版进行二次开发 卖998 演示地址 ...

  5. ci框架基础知识点

    一.路由 1.index.php/test/hello->控制器test的hello方法 2. 也可以手动配置路由   app/config/routes.php中     I:$route[' ...

  6. idea出现Error:Maven Resources Compiler: Maven project configuration required for module 'market' isn't available.

    idea出现如下错误解决办法 1.重新在Build-Rebuild project 既可以解决啦

  7. Mysql根据指定字段的int值查出在当前列表的排名

    先看表结构和数据: DROP TABLE IF EXISTS `ndb_record`; CREATE TABLE `ndb_record` ( `id` bigint(20) NOT NULL AU ...

  8. Windows下如何硬盘安装Ubuntu

    一般来说,折腾双系统是每一位程序猿都有过的经历,如何在windows下安装双系统ubuntu呢?今天来给大家介绍一下如何直接在windows硬盘安装ubuntu,而不需要使用U盘或者光盘,或外置硬盘. ...

  9. SpringBoot+Mybatis+PageHelper简化分页实现

    前言 经过一段时间的测试和修改PageHelper插件逐渐走到了让我觉得靠谱的时候,它功能的就是简化分页的实现,让分页不需要麻烦的多写很多重复的代码. 已经加入我的github模版中:https:// ...

  10. js处理时间戳显示的问题

    function getDate(tm){ ); var year = date.getFullYear(); var month = date.getMonth()+1; var day = dat ...