Android 框架练成 教你打造高效的图片加载框架
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/41874561,本文出自:【张鸿洋的博客】
1、概述
优秀的图片加载框架不要太多,什么UIL , Volley ,Picasso,Imageloader等等。但是作为一名合格的程序猿,必须懂其中的实现原理,于是乎,今天我就带大家一起来设计一个加载网络、本地的图片框架。有人可能会说,自己写会不会很渣,运行效率,内存溢出神马的。放心,我们拿demo说话,拼得就是速度,奏事这么任性。
好了,如果你看过之前的博文,类似Android Handler 异步消息处理机制的妙用 创建强大的图片加载类,可能会对接下来文章理解会有很大的帮助。没有的话,就跟我往下继续走吧,也不要去看了。
关于加载本地图片,当然了,我手机图片比较少,7000来张:
1、首先肯定不能内存溢出,但是尼玛现在像素那么高,怎么才能保证呢?我相信利用LruCache统一管理你的图片是个不二的选择,所有的图片从LruCache里面取,保证所有的图片的内存不会超过预设的空间。
2、加载速度要刚刚的,我一用力,滑动到3000张的位置,你要是还在从第一张给我加载,尼玛,你以为我打dota呢。所以我们需要引入加载策略,我们不能FIFO,我们选择LIFO,当前呈现给用户的,最新加载;当前未呈现的,选择加载。
3、使用方便。一般图片都会使用GridView作为控件,在getView里面进行图片加载,当然了为了不错乱,可能还需要用户去自己setTag,自己写回调设置图片。当然了,我们不需要这么麻烦,一句话IoadImage(imageview,path)即可,剩下的请交给我们的图片加载框架处理。
做到以上几点,关于本地的图片加载应该就木有什么问题了。
关于加载网络图片,其实原理差不多,就多了个是否启用硬盘缓存的选项,如果启用了,加载时,先从内存中查找,然后从硬盘上找,最后去网络下载。下载完成后,别忘了写入硬盘,加入内存缓存。如果没有启用,那么就直接从网络压缩获取,加入内存即可。
2、效果图
终于扯完了,接下来,简单看个效果图,关于加载本地图片的效果图:可以从Android 超高仿微信图片选择器 图片该这么加载这篇博客中下载Demo运行。
下面演示一个网络加载图片的例子:
80多张从网络加载的图片,可以看到我直接拖到最后,基本是呈现在用户眼前的最先加载,要是从第一张到80多,估计也是醉了。
此外:图片来自老郭的博客,感谢!!!ps:如果你觉得图片不劲爆,Day Day Up找老郭去。
3、完全解析
1、关于图片的压缩
不管是从网络还是本地的图片,加载都需要进行压缩,然后显示:
用户要你压缩显示,会给我们什么?一个imageview,一个path,我们的职责就是压缩完成后显示上去。
1、本地图片的压缩
a、获得imageview想要显示的大小
想要压缩,我们第一步应该是获得imageview想要显示的大小,没大小肯定没办法压缩?
那么如何获得imageview想要显示的大小呢?
/**
* 根据ImageView获适当的压缩的宽和高
*
* @param imageView
* @return
*/
public static ImageSize getImageViewSize(ImageView imageView)
{ ImageSize imageSize = new ImageSize();
DisplayMetrics displayMetrics = imageView.getContext().getResources()
.getDisplayMetrics(); LayoutParams lp = imageView.getLayoutParams(); int width = imageView.getWidth();// 获取imageview的实际宽度
if (width <= 0)
{
width = lp.width;// 获取imageview在layout中声明的宽度
}
if (width <= 0)
{
// width = imageView.getMaxWidth();// 检查最大值
width = getImageViewFieldValue(imageView, "mMaxWidth");
}
if (width <= 0)
{
width = displayMetrics.widthPixels;
} int height = imageView.getHeight();// 获取imageview的实际高度
if (height <= 0)
{
height = lp.height;// 获取imageview在layout中声明的宽度
}
if (height <= 0)
{
height = getImageViewFieldValue(imageView, "mMaxHeight");// 检查最大值
}
if (height <= 0)
{
height = displayMetrics.heightPixels;
}
imageSize.width = width;
imageSize.height = height; return imageSize;
} public static class ImageSize
{
int width;
int height;
}
可以看到,我们拿到imageview以后:
首先企图通过getWidth获取显示的宽;有些时候,这个getWidth返回的是0;
那么我们再去看看它有没有在布局文件中书写宽;
如果布局文件中也没有精确值,那么我们再去看看它有没有设置最大值;
如果最大值也没设置,那么我们只有拿出我们的终极方案,使用我们的屏幕宽度;
总之,不能让它任性,我们一定要拿到一个合适的显示值。
可以看到这里或者最大宽度,我们用的反射,而不是getMaxWidth();维萨呢,因为getMaxWidth竟然要API 16,我也是醉了;为了兼容性,我们采用反射的方案。反射的代码就不贴了。
b、设置合适的inSampleSize
我们获得想要显示的大小,为了什么,还不是为了和图片的真正的宽高做比较,拿到一个合适的inSampleSize,去对图片进行压缩么。
那么首先应该是拿到图片的宽和高:
// 获得图片的宽和高,并不把图片加载到内存中
BitmapFactory.Options options = new BitmapFactory.Options();
options.inJustDecodeBounds = true;
BitmapFactory.decodeFile(path, options);
这三行就成功获取图片真正的宽和高了,存在我们的options里面;
然后我们就可以happy的去计算inSampleSize了:
/**
* 根据需求的宽和高以及图片实际的宽和高计算SampleSize
*
* @param options
* @param width
* @param height
* @return
*/
public static int caculateInSampleSize(Options options, int reqWidth,
int reqHeight)
{
int width = options.outWidth;
int height = options.outHeight; int inSampleSize = 1; if (width > reqWidth || height > reqHeight)
{
int widthRadio = Math.round(width * 1.0f / reqWidth);
int heightRadio = Math.round(height * 1.0f / reqHeight); inSampleSize = Math.max(widthRadio, heightRadio);
} return inSampleSize;
}
options里面存了实际的宽和高;reqWidth和reqHeight就是我们之前得到的想要显示的大小;经过比较,得到一个合适的inSampleSize;
有了inSampleSize:
options.inSampleSize = ImageSizeUtil.caculateInSampleSize(options,
width, height); // 使用获得到的InSampleSize再次解析图片
options.inJustDecodeBounds = false;
Bitmap bitmap = BitmapFactory.decodeFile(path, options);
return bitmap;
经过这几行,就完成图片的压缩了。
上述是本地图片的压缩,那么如果是网络图片呢?
2、网络图片的压缩
a、直接下载存到sd卡,然后采用本地的压缩方案。这种方式当前是在硬盘缓存开启的情况下,如果没有开启呢?
b、使用BitmapFactory.decodeStream(is, null, opts);
/**
* 根据url下载图片在指定的文件
*
* @param urlStr
* @param file
* @return
*/
public static Bitmap downloadImgByUrl(String urlStr, ImageView imageview)
{
FileOutputStream fos = null;
InputStream is = null;
try
{
URL url = new URL(urlStr);
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
is = new BufferedInputStream(conn.getInputStream());
is.mark(is.available()); Options opts = new Options();
opts.inJustDecodeBounds = true;
Bitmap bitmap = BitmapFactory.decodeStream(is, null, opts); //获取imageview想要显示的宽和高
ImageSize imageViewSize = ImageSizeUtil.getImageViewSize(imageview);
opts.inSampleSize = ImageSizeUtil.caculateInSampleSize(opts,
imageViewSize.width, imageViewSize.height); opts.inJustDecodeBounds = false;
is.reset();
bitmap = BitmapFactory.decodeStream(is, null, opts); conn.disconnect();
return bitmap; } catch (Exception e)
{
e.printStackTrace();
} finally
{
try
{
if (is != null)
is.close();
} catch (IOException e)
{
} try
{
if (fos != null)
fos.close();
} catch (IOException e)
{
}
} return null; }
基本和本地压缩差不多,也是两次取样,当然需要注意一点,我们的is进行了包装,以便可以进行reset();直接返回的is是不能使用两次的。
到此,图片压缩说完了。
2、图片加载框架的架构
我们的图片压缩加载完了,那么就应该放入我们的LruCache,然后设置到我们的ImageView上。
好了,接下来我们来说说我们的这个框架的架构;
1、单例,包含一个LruCache用于管理我们的图片;
2、任务队列,我们每来一次加载图片的请求,我们会封装成Task存入我们的TaskQueue;
3、包含一个后台线程,这个线程在第一次初始化实例的时候启动,然后会一直在后台运行;任务呢?还记得我们有个任务队列么,有队列存任务,得有人干活呀;所以,当每来一次加载图片请求的时候,我们同时发一个消息到后台线程,后台线程去使用线程池去TaskQueue去取一个任务执行;
4、调度策略;3中说了,后台线程去TaskQueue去取一个任务,这个任务不是随便取的,有策略可以选择,一个是FIFO,一个是LIFO,我倾向于后者。
好了,基本就这些结构,接下来看我们具体的实现。
3、具体的实现
1、构造方法
public static ImageLoader getInstance(int threadCount, Type type)
{
if (mInstance == null)
{
synchronized (ImageLoader.class)
{
if (mInstance == null)
{
mInstance = new ImageLoader(threadCount, type);
}
}
}
return mInstance;
}
这个就不用说了,重点看我们的构造方法
/**
* 图片加载类
*
* @author zhy
*
*/
public class ImageLoader
{
private static ImageLoader mInstance; /**
* 图片缓存的核心对象
*/
private LruCache<String, Bitmap> mLruCache;
/**
* 线程池
*/
private ExecutorService mThreadPool;
private static final int DEAFULT_THREAD_COUNT = 1;
/**
* 队列的调度方式
*/
private Type mType = Type.LIFO;
/**
* 任务队列
*/
private LinkedList<Runnable> mTaskQueue;
/**
* 后台轮询线程
*/
private Thread mPoolThread;
private Handler mPoolThreadHandler;
/**
* UI线程中的Handler
*/
private Handler mUIHandler; private Semaphore mSemaphorePoolThreadHandler = new Semaphore(0);
private Semaphore mSemaphoreThreadPool; private boolean isDiskCacheEnable = true; private static final String TAG = "ImageLoader"; public enum Type
{
FIFO, LIFO;
} private ImageLoader(int threadCount, Type type)
{
init(threadCount, type);
} /**
* 初始化
*
* @param threadCount
* @param type
*/
private void init(int threadCount, Type type)
{
initBackThread(); // 获取我们应用的最大可用内存
int maxMemory = (int) Runtime.getRuntime().maxMemory();
int cacheMemory = maxMemory / 8;
mLruCache = new LruCache<String, Bitmap>(cacheMemory)
{
@Override
protected int sizeOf(String key, Bitmap value)
{
return value.getRowBytes() * value.getHeight();
} }; // 创建线程池
mThreadPool = Executors.newFixedThreadPool(threadCount);
mTaskQueue = new LinkedList<Runnable>();
mType = type;
mSemaphoreThreadPool = new Semaphore(threadCount);
} /**
* 初始化后台轮询线程
*/
private void initBackThread()
{
// 后台轮询线程
mPoolThread = new Thread()
{
@Override
public void run()
{
Looper.prepare();
mPoolThreadHandler = new Handler()
{
@Override
public void handleMessage(Message msg)
{
// 线程池去取出一个任务进行执行
mThreadPool.execute(getTask());
try
{
mSemaphoreThreadPool.acquire();
} catch (InterruptedException e)
{
}
}
};
// 释放一个信号量
mSemaphorePoolThreadHandler.release();
Looper.loop();
};
}; mPoolThread.start();
}
在贴构造的时候,顺便贴出所有的成员变量;
在构造中我们调用init,init中可以设置后台加载图片线程数量和加载策略;init中首先初始化后台线程initBackThread(),可以看到这个后台线程,实际上是个Looper最终在那不断的loop,我们还初始化了一个mPoolThreadHandler用于发送消息到此线程;
接下来就是初始化mLruCache , mThreadPool ,mTaskQueue 等;
2、loadImage
构造完成以后,当然是使用了,用户调用loadImage传入(final String path, final ImageView imageView,final boolean isFromNet)就可以完成本地或者网络图片的加载。
/**
* 根据path为imageview设置图片
*
* @param path
* @param imageView
*/
public void loadImage(final String path, final ImageView imageView,
final boolean isFromNet)
{
imageView.setTag(path);
if (mUIHandler == null)
{
mUIHandler = new Handler()
{
public void handleMessage(Message msg)
{
// 获取得到图片,为imageview回调设置图片
ImgBeanHolder holder = (ImgBeanHolder) msg.obj;
Bitmap bm = holder.bitmap;
ImageView imageview = holder.imageView;
String path = holder.path;
// 将path与getTag存储路径进行比较
if (imageview.getTag().toString().equals(path))
{
imageview.setImageBitmap(bm);
}
};
};
} // 根据path在缓存中获取bitmap
Bitmap bm = getBitmapFromLruCache(path); if (bm != null)
{
refreashBitmap(path, imageView, bm);
} else
{
addTask(buildTask(path, imageView, isFromNet));
} }
首先我们为imageview.setTag;然后初始化一个mUIHandler,不用猜,这个mUIHandler用户更新我们的imageview,因为这个方法肯定是主线程调用的。
然后调用:getBitmapFromLruCache(path);根据path在缓存中获取bitmap;如果找到那么直接去设置我们的图片;
private void refreashBitmap(final String path, final ImageView imageView,
Bitmap bm)
{
Message message = Message.obtain();
ImgBeanHolder holder = new ImgBeanHolder();
holder.bitmap = bm;
holder.path = path;
holder.imageView = imageView;
message.obj = holder;
mUIHandler.sendMessage(message);
}
可以看到,如果找到图片,则直接使用UIHandler去发送一个消息,当然了携带了一些必要的参数,然后UIHandler的handleMessage中完成图片的设置;
handleMessage中拿到path,bitmap,imageview;记得必须要:
// 将path与getTag存储路径进行比较
if (imageview.getTag().toString().equals(path))
{
imageview.setImageBitmap(bm);
}
否则会造成图片混乱。
如果没找到,则通过buildTask去新建一个任务,在addTask到任务队列。
buildTask就比较复杂了,因为还涉及到本地和网络,所以我们先看addTask代码:
private synchronized void addTask(Runnable runnable)
{
mTaskQueue.add(runnable);
// if(mPoolThreadHandler==null)wait();
try
{
if (mPoolThreadHandler == null)
mSemaphorePoolThreadHandler.acquire();
} catch (InterruptedException e)
{
}
mPoolThreadHandler.sendEmptyMessage(0x110);
}
很简单,就是runnable加入TaskQueue,与此同时使用mPoolThreadHandler(这个handler还记得么,用于和我们后台线程交互。)去发送一个消息给后台线程,叫它去取出一个任务执行;具体代码:
mPoolThreadHandler = new Handler()
{
@Override
public void handleMessage(Message msg)
{
// 线程池去取出一个任务进行执行
mThreadPool.execute(getTask());
直接使用mThreadPool线程池,然后使用getTask去取一个任务。
/**
* 从任务队列取出一个方法
*
* @return
*/
private Runnable getTask()
{
if (mType == Type.FIFO)
{
return mTaskQueue.removeFirst();
} else if (mType == Type.LIFO)
{
return mTaskQueue.removeLast();
}
return null;
}
getTask代码也比较简单,就是根据Type从任务队列头或者尾进行取任务。
现在你会不会好奇,任务里面到底什么代码?其实我们也就剩最后一段代码了buildTask
/**
* 根据传入的参数,新建一个任务
*
* @param path
* @param imageView
* @param isFromNet
* @return
*/
private Runnable buildTask(final String path, final ImageView imageView,
final boolean isFromNet)
{
return new Runnable()
{
@Override
public void run()
{
Bitmap bm = null;
if (isFromNet)
{
File file = getDiskCacheDir(imageView.getContext(),
md5(path));
if (file.exists())// 如果在缓存文件中发现
{
Log.e(TAG, "find image :" + path + " in disk cache .");
bm = loadImageFromLocal(file.getAbsolutePath(),
imageView);
} else
{
if (isDiskCacheEnable)// 检测是否开启硬盘缓存
{
boolean downloadState = DownloadImgUtils
.downloadImgByUrl(path, file);
if (downloadState)// 如果下载成功
{
Log.e(TAG,
"download image :" + path
+ " to disk cache . path is "
+ file.getAbsolutePath());
bm = loadImageFromLocal(file.getAbsolutePath(),
imageView);
}
} else
// 直接从网络加载
{
Log.e(TAG, "load image :" + path + " to memory.");
bm = DownloadImgUtils.downloadImgByUrl(path,
imageView);
}
}
} else
{
bm = loadImageFromLocal(path, imageView);
}
// 3、把图片加入到缓存
addBitmapToLruCache(path, bm);
refreashBitmap(path, imageView, bm);
mSemaphoreThreadPool.release();
} };
} private Bitmap loadImageFromLocal(final String path,
final ImageView imageView)
{
Bitmap bm;
// 加载图片
// 图片的压缩
// 1、获得图片需要显示的大小
ImageSize imageSize = ImageSizeUtil.getImageViewSize(imageView);
// 2、压缩图片
bm = decodeSampledBitmapFromPath(path, imageSize.width,
imageSize.height);
return bm;
}
我们新建任务,说明在内存中没有找到缓存的bitmap;我们的任务就是去根据path加载压缩后的bitmap返回即可,然后加入LruCache,设置回调显示。
首先我们判断是否是网络任务?
如果是,首先去硬盘缓存中找一下,(硬盘中文件名为:根据path生成的md5为名称)。
如果硬盘缓存中没有,那么去判断是否开启了硬盘缓存:
开启了的话:下载图片,使用loadImageFromLocal本地加载图片的方式进行加载(压缩的代码前面已经详细说过);
如果没有开启:则直接从网络获取(压缩获取的代码,前面详细说过);
如果不是网络图片:直接loadImageFromLocal本地加载图片的方式进行加载
经过上面,就获得了bitmap;然后加入addBitmapToLruCache,refreashBitmap回调显示图片。
/**
* 将图片加入LruCache
*
* @param path
* @param bm
*/
protected void addBitmapToLruCache(String path, Bitmap bm)
{
if (getBitmapFromLruCache(path) == null)
{
if (bm != null)
mLruCache.put(path, bm);
}
}
到此,我们所有的代码就分析完成了;
缓存的图片位置:在SD卡的Android/data/项目packageName/cache中:
不过有些地方需要注意:就是在代码中,你会看到一些信号量的身影:
第一个:mSemaphorePoolThreadHandler = new Semaphore(0); 用于控制我们的mPoolThreadHandler的初始化完成,我们在使用mPoolThreadHandler会进行判空,如果为null,会通过mSemaphorePoolThreadHandler.acquire()进行阻塞;当mPoolThreadHandler初始化结束,我们会调用.release();解除阻塞。
第二个:mSemaphoreThreadPool = new Semaphore(threadCount);这个信号量的数量和我们加载图片的线程个数一致;每取一个任务去执行,我们会让信号量减一;每完成一个任务,会让信号量+1,再去取任务;目的是什么呢?为什么当我们的任务到来时,如果此时在没有空闲线程,任务则一直添加到TaskQueue中,当线程完成任务,可以根据策略去TaskQueue中去取任务,只有这样,我们的LIFO才有意义。
到此,我们的图片加载框架就结束了,你可以尝试下加载本地,或者去加载网络大量的图片,拼一拼加载速度~~~
4、MainActivity
现在是使用的时刻~~
我在MainActivity中,我使用了Fragment,下面我贴下Fragment和布局文件的代码,具体的,大家自己看代码:
package com.example.demo_zhy_18_networkimageloader; import android.content.Context;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.util.Log;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.GridView;
import android.widget.ImageView; import com.zhy.utils.ImageLoader;
import com.zhy.utils.ImageLoader.Type;
import com.zhy.utils.Images; public class ListImgsFragment extends Fragment
{
private GridView mGridView;
private String[] mUrlStrs = Images.imageThumbUrls;
private ImageLoader mImageLoader; @Override
public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
mImageLoader = ImageLoader.getInstance(3, Type.LIFO);
} @Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState)
{
View view = inflater.inflate(R.layout.fragment_list_imgs, container,
false);
mGridView = (GridView) view.findViewById(R.id.id_gridview);
setUpAdapter();
return view;
} private void setUpAdapter()
{
if (getActivity() == null || mGridView == null)
return; if (mUrlStrs != null)
{
mGridView.setAdapter(new ListImgItemAdaper(getActivity(), 0,
mUrlStrs));
} else
{
mGridView.setAdapter(null);
} } private class ListImgItemAdaper extends ArrayAdapter<String>
{ public ListImgItemAdaper(Context context, int resource, String[] datas)
{
super(getActivity(), 0, datas);
Log.e("TAG", "ListImgItemAdaper");
} @Override
public View getView(int position, View convertView, ViewGroup parent)
{
if (convertView == null)
{
convertView = getActivity().getLayoutInflater().inflate(
R.layout.item_fragment_list_imgs, parent, false);
}
ImageView imageview = (ImageView) convertView
.findViewById(R.id.id_img);
imageview.setImageResource(R.drawable.pictures_no);
mImageLoader.loadImage(getItem(position), imageview, true);
return convertView;
} } }
可以看到我们在getView中,使用mImageLoader.loadImage一行即完成了图片的加载。
fragment_list_imgs.xml
<GridView xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/id_gridview"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:horizontalSpacing="3dp"
android:verticalSpacing="3dp"
android:numColumns="3"
> </GridView>
item_fragment_list_imgs.xml
<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/id_img"
android:layout_width="match_parent"
android:layout_height="120dp"
android:scaleType="centerCrop" > </ImageView>
好了,到此结束~~~有任何bug或者意见欢迎留言~
----------------------------------------------------------------------------------------------------------
博主部分视频已经上线,如果你不喜欢枯燥的文本,请猛戳(初录,期待您的支持):
2、Android自定义控件实战 打造Android流式布局和热门标签
版权声明:本文为博主原创文章,未经博主允许不得转载。
Android 框架练成 教你打造高效的图片加载框架的更多相关文章
- Android 框架练成 教你打造高效的图片加载框架(转)
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/41874561,本文出自:[张鸿洋的博客] 1.概述 优秀的图片加载框架不要太多, ...
- Android高效异步图片加载框架
概述 Android高效异步图片加载框架:一个高效的异步加载显示的图片加载框架,同时具备图片压缩,缓存机制等特性. 详细 代码下载:http://www.demodashi.com/demo/1214 ...
- Android 框架修炼-自己开发高效异步图片加载框架
一.概述 目前为止,第三方的图片加载框架挺多的,比如UIL , Volley Imageloader等等.但是最好能知道实现原理,所以下面就来看看设计并开发一个加载网络.本地的图片框架. 总所周知,图 ...
- Fresco从配置到使用(最高效的图片加载框架)
Frescoj说明: facebook开源的针对android应用的图片加载框架,高效和功能齐全. 支持加载网络,本地存储和资源图片: 提供三级缓存(二级memory和一级internal ...
- Android图片加载框架最全解析(三),深入探究Glide的缓存机制
在本系列的上一篇文章中,我带着大家一起阅读了一遍Glide的源码,初步了解了这个强大的图片加载框架的基本执行流程. 不过,上一篇文章只能说是比较粗略地阅读了Glide整个执行流程方面的源码,搞明白了G ...
- Android图片加载框架最全解析(一),Glide的基本用法
现在Android上的图片加载框架非常成熟,从最早的老牌图片加载框架UniversalImageLoader,到后来Google推出的Volley,再到后来的新兴军Glide和Picasso,当然还有 ...
- Android之Glide(非常好用的图片加载框架)
谷歌开发者论坛上,谷歌为我们介绍了一个名叫 Glide 的图片加载库,作者是bumptech. Glide是一种快速.高效的开源媒体管理和Android的包裹mediadecoding图像加载框架,内 ...
- Android之图片加载框架Fresco基本使用(一)
PS:Fresco这个框架出的有一阵子了,也是现在非常火的一款图片加载框架.听说内部实现的挺牛逼的,虽然自己还没研究原理.不过先学了一下基本的功能,感受了一下这个框架的强大之处.本篇只说一下在xml中 ...
- 一起写一个Android图片加载框架
本文会从内部原理到具体实现来详细介绍如何开发一个简洁而实用的Android图片加载缓存框架,并在内存占用与加载图片所需时间这两个方面与主流图片加载框架之一Universal Image Loader做 ...
随机推荐
- Zookeeper管理多个HBase集群
zookeeper是hbase集群的"协调器".由于zookeeper的轻量级特性,因此我们可以将多个hbase集群共用一个zookeeper集群,以节约大量的服务器.多个hbas ...
- Github搜索技巧-如何使用github找到自己感兴趣的项目
Github现在不仅仅作为一个版本控制工具,更是一个开源的仓库,里面不但有优秀的开源代码,电子书,还有一些五花八门的项目,有些国家的法律也放在上面,作为程序员如何找到自己感兴趣的项目就非常重要了! 欢 ...
- Linux 系统应用编程——线程基础
传统多任务操作系统中一个可以独立调度的任务(或称之为顺序执行流)是一个进程.每个程序加载到内存后只可以唯一地对应创建一个顺序执行流,即传统意义的进程.每个进程的全部系统资源是私有的,如虚拟地址空间,文 ...
- 程序员面试宝典3TH-ch7.2
下列程序的输出结果是什么? #include "stdafx.h" #include <iostream> using namespace std; class A { ...
- Idea(一) 安装与破解
现在idea横行的时代,没用过idea都不好意思了,于是乎,我也下载感受下. 下载安装包和破解地址: 链接: https://pan.baidu.com/s/16OeiDw942JaPXKtc9Oz1 ...
- 对ManualResetEvent和AutoResetEvent的巩固练习
在多线程编程中,最常用到的就是线程同步问题,前段时间开发地址采集服务器,需要携带经纬度到MapAbc中采集后,返回地址,才可以进行下一条经纬度的采集,因为队列处理和解析不是同一个线程,并且是解析经纬度 ...
- 【读书笔记】C++Primer---第一章
1.标准库的头文件用尖括号<>括起来,非标准库的头文件用双引号“”括起来:
- Mybatis 系列5
上篇系列4中 为大家介绍了mybatis中别名的使用,以及其源码.本篇将为大家介绍TypeHandler, 并简单分析其源码. Mybatis中的TypeHandler是什么? 无论是 MyBatis ...
- 几个大型网站的Feeds(Timeline)设计简单对比
https://mp.weixin.qq.com/s?__biz=MjM5NzQ3ODAwMQ==&mid=404465806&idx=1&sn=3a68a786138538f ...
- jQuery匿名函数$(function(){ }
搬运原地址:https://zhidao.baidu.com/question/473318430.html $(function(){ }实际上是匿名函数.这是JQuery的语法,$表示JQuery ...