对Logistic回归模型,个人做的一些总结:

公式就不套用了,教材上面基本都有而且详细。logistic回归用图形化形式描述如下:

logistic回归是一种简单高效的分类模型,它不仅可以通过学习来预测样本的类别,还可以得到样本属于各个类别的概率信息。因此在机器学习中得到了及其广泛的应用。

同时,它还有比较与其他模型的一些优点:

(1)logistic回归模型是线性模型,线性模型的优势是稳定性强,求解简单。但通常情况下,线性回归拟合得到的输出范围是不确定的,可以从负无穷至正无穷的区间范围内,输出的“不确定性”给分类问题提出了很大的挑战。logistic回归模型汲取了一般线性模型的优点,同时由于增加了Sigmoid函数,因此将输出范围限定在了0-1区间,而最终的输出可以看作是输入的条件概率分布。因此具有很好的实用性和可解释性。

(2)模型求导方便,使用简单的求导法则即可完成模型的求导,因此很多教材/教程都将该模型作为了入门学习的模型,受众广大/使用简单。相比于神经网络/SVM等模型,对于应用者来说是拿来就可以用的起的模型。

(3)模型是基于统计学的,在二分类情况下,假设样本服从伯努利分布后最大化极大似然函数进行推导的结果,这一部分可以参考斯坦福大学的资料,因此是具备足够理论支撑的模型。

(4)同样是计算过程简单,对于现在互联网行业中轻则百万千万的样本量的输入来说,使用起来是低成本的,同时迭代起来也快。

(5)对于小样本量来说,logistic模型训练参数的个数与输入维数是基本一致的,在前期进过降维和特征选择之后,输入的特征并不会太多,因此需要训练的参数个数相比其他模型来说相对较少,过拟合的程度相对还好。

(6)处理多分类问题,可以使用one to all的方法训练多个分类器,在神经网络处理多分类问题时,最终输出结果通常会使用softmax函数,可以看作是logistic模型的广义推广。

欢迎同行指正和补充。

logistic分类的更多相关文章

  1. 深度学习笔记(一):logistic分类【转】

    本文转载自:https://blog.csdn.net/u014595019/article/details/52554582 这个系列主要记录我在学习各个深度学习算法时候的笔记,因为之前已经学过大概 ...

  2. 线性模型-线性回归、Logistic分类

    线性模型是机器学习中最简单的,最基础的模型结果,常常被应用于分类.回归等学习任务中. 回归和分类区别: 回归:预测值是一个连续的实数: 分类:预测值是离散的类别数据. 1.     线性模型做回归任务 ...

  3. 多分类-- ROC曲线

    本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明.如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.c ...

  4. logistic回归学习

    logistic回归是一种分类方法,用于两分类的问题,其基本思想为: 寻找合适的假设函数,即分类函数,用来预测输入数据的结果: 构造损失函数,用来表示预测的输出结果与训练数据中实际类别之间的偏差: 最 ...

  5. 『科学计算』通过代码理解SoftMax多分类

    SoftMax实际上是Logistic的推广,当分类数为2的时候会退化为Logistic分类 其计算公式和损失函数如下, 梯度如下, 1{条件} 表示True为1,False为0,在下图中亦即对于每个 ...

  6. 多分类下的ROC曲线和AUC

    本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明.如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.c ...

  7. 机器学习实战之Logistic回归

    Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...

  8. 数据分析logistic回归与时间序列

    logistics回归 1.影响关系研究是所有研究中最为常见的. 2.当y是定量数据时,线性回归可以用来分析影响关系. 3.如果现在想对某件事情发生的概率进行预估,比如一件衣服的是否有人想购买? 这里 ...

  9. (六) 6.1 Neurons Networks Representation

    面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...

随机推荐

  1. [python]_ELVE_pip2和pip3如何共存

    作者:匿名用户链接:https://www.zhihu.com/question/21653286/answer/95532074来源:知乎著作权归作者所有,转载请联系作者获得授权. 想学习Pytho ...

  2. echarts版本折线图

    1.效果如下:         绘制折线图,应该算是说echarts中使用最简单也算使用频率最高的一种功能了吧.根据官网列子能找出规律,只是有些属性对于初接触者来说,会有点陌生,不过仔细阅读一下还是不 ...

  3. windows汇编环境配置

    原文地址 软件下载 需要的软件已经打包,包括dosbox和MASM.如果没有这两个软件可以在下面的地址下载. http://hjwblog.com/game/汇编环境.zip 点击下载 安装dosbo ...

  4. YARN中FIFO、Capacity以及Fari调度器的详细介绍

    (1)FIFO Scheduler 将所有的Applications放到队列中,先按照作业的优先级高低.再按照到达时间的先后,为每个app分配资源.如果第一个app需要的资源被满足了,如果还剩下了资源 ...

  5. [LeetCode] Maximum Product of Three Numbers 三个数字的最大乘积

    Given an integer array, find three numbers whose product is maximum and output the maximum product. ...

  6. 【Swift】swift定义全局变量

    swift定义全局变量非常简单哈,只要在类class上面直接定义,就是全局变量了 当需要在类里面定义一个类函数访问的变量的时候,直接在var或者let 前面加一个 static

  7. Shiro整合Spring

    首先需要添加shiro的spring整合包. 要想在WEB应用中整合Spring和Shiro的话,首先需要添加一个由spring代理的过滤器如下: <!-- The filter-name ma ...

  8. [HNOI 2010]Bounce 弹飞绵羊

    Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...

  9. TopCoder SRM 566 Div 1 - Problem 1000 FencingPenguins

    传送门:https://284914869.github.io/AEoj/566.html 题目简述: 平面上有中心在原点,一个点在(r,0)处的正n边形的n个顶点.平面上还有m个企鹅,每个企鹅有一个 ...

  10. ●HDU 5608 function

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=5608 题解: 莫比乌斯反演,杜教筛 已知$$N^2-3N+2=\sum_{d|N} f(d)$$ 多次询 ...