BZOJ 1171: 大sz的游戏
ZJOI讲课的题目,数据结构什么的还是很友好的说
首先我们发现题目中提到的距离\(\le L\)的东西显然可以用单调队列维护
但是暴力搞去不掉区间并的限制,那么我们考虑从区间并入手
对于这种问题的套路有一个就是线段树维护一个区间的最优解,然后计算完一个点的答案之后直接在线段树上更新即可
所以我们有了一个很naive的思路——线段树套单调队列,但随便一想时空复杂度都是\(O(n^2)\)的
让我们想一下复杂度变大的原因是什么,其实就是pushdown带来的大量空间浪费
我们再仔细观察依稀这个问题的性质,发现其可以标记永久化,那么就很舒服了,时空复杂度都达到了优秀的\(O(n\log\ n)\)
然后像我这样naive的人就写出了这样的巨慢CODE
#include<cstdio>
#include<cctype>
#include<deque>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=250005,INF=2e9;
int n,m,rst[N<<1],L[N],R[N],ans[N],dis[N],cnt,ret;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc('\n')); if (x<0) x=-x,pc('-'); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
inline int find(CI x)
{
return lower_bound(rst+1,rst+cnt+1,x)-rst;
}
class Segment_Tree
{
private:
deque <int> dq[N<<3];
public:
#define TN CI now=1,CI l=1,CI r=cnt
#define O beg,end,pos
inline void build(TN)
{
dq[now].push_back(1); if (l==r) return; int mid=l+r>>1;
build(now<<1,l,mid); build(now<<1|1,mid+1,r);
}
inline void insert(CI beg,CI end,CI pos,TN)
{
while (!dq[now].empty()&&ans[pos]<ans[dq[now].back()]) dq[now].pop_back();
dq[now].push_back(pos); if (l==r) return; int mid=l+r>>1;
if (beg<=mid) insert(O,now<<1,l,mid); if (end>mid) insert(O,now<<1|1,mid+1,r);
}
inline void getpos(CI beg,CI end,CI pos,TN)
{
if (beg<=l&&r<=end)
{
while (!dq[now].empty()&&dis[pos]-dis[dq[now].front()]>m) dq[now].pop_front();
if (!dq[now].empty()&&(!~ret||ans[dq[now].front()]<ans[ret])) ret=dq[now].front(); return;
}
int mid=l+r>>1; if (beg<=mid) getpos(O,now<<1,l,mid); if (end>mid) getpos(O,now<<1|1,mid+1,r);
}
#undef TN
#undef O
}SEG;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i; for (F.read(n),F.read(m),i=2;i<=n;++i)
F.read(L[i]),F.read(R[i]),rst[++cnt]=L[i],rst[++cnt]=R[i],F.read(dis[i]);
sort(rst+1,rst+cnt+1); cnt=unique(rst+1,rst+cnt+1)-rst-1;
for (i=2;i<=n;++i) L[i]=find(L[i]),R[i]=find(R[i]);
for (SEG.build(),i=2;i<=n;++i)
{
ret=-1; SEG.getpos(L[i],R[i],i); if (!~ret) ans[i]=INF;
else ans[i]=ans[ret]+1; SEG.insert(L[i],R[i],i);
}
for (i=2;i<=n;++i) F.write(ans[i]!=INF?ans[i]:-1); return F.Fend(),0;
}
没办法,我们发现这个程序慢有两点:
deque巨慢无比,而且内存占用极大- 没有维护每个节点的答案,这样查询的时候复杂度极高
然后解决方案也很简单:
- 把
deque换成list(快如闪电) - 单独写删除操作,并且记下每个点的答案
然后就可以顺利地通过此题了QWQ
#include<cstdio>
#include<cctype>
#include<list>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=250005,INF=1e9;
int n,m,rst[N<<1],q[N],L[N],R[N],dis[N],ans[N],cnt,pos;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc('\n')); if (x<0) x=-x,pc('-'); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
inline int find(CI x)
{
return lower_bound(rst+1,rst+cnt+1,x)-rst;
}
class Segment_Tree
{
private:
list <int> dq[N<<3]; int val[N<<3];
inline void miner(int &x,CI y)
{
if (y<x) x=y;
}
inline int get(CI now)
{
if (dq[now].empty()) return INF; return ans[dq[now].front()];
}
inline void pushup(CI now,const bool& op)
{
val[now]=get(now); if (op) miner(val[now],val[now<<1]),miner(val[now],val[now<<1|1]);
}
public:
#define TN CI now=1,CI l=1,CI r=cnt
#define O beg,end,pos
inline void build(TN)
{
val[now]=INF; if (l==r) return; int mid=l+r>>1; build(now<<1,l,mid); build(now<<1|1,mid+1,r);
}
inline void insert(CI beg,CI end,CI pos,TN)
{
if (beg<=l&&r<=end)
{
while (!dq[now].empty()&&ans[pos]<=ans[dq[now].back()])
dq[now].pop_back(); dq[now].push_back(pos); return pushup(now,l!=r);
}
int mid=l+r>>1; if (beg<=mid) insert(O,now<<1,l,mid);
if (end>mid) insert(O,now<<1|1,mid+1,r); pushup(now,l!=r);
}
inline void remove(CI beg,CI end,CI pos,TN)
{
if (beg<=l&&r<=end)
{
while (!dq[now].empty()&&dq[now].front()<=pos)
dq[now].pop_front(); return pushup(now,l!=r);
}
int mid=l+r>>1; if (beg<=mid) remove(O,now<<1,l,mid);
if (end>mid) remove(O,now<<1|1,mid+1,r); pushup(now,l!=r);
}
inline int query(CI beg,CI end,TN)
{
if (beg<=l&&r<=end) return val[now]; int mid=l+r>>1,ret=get(now);
if (beg<=mid) miner(ret,query(beg,end,now<<1,l,mid));
if (end>mid) miner(ret,query(beg,end,now<<1|1,mid+1,r)); return ret;
}
#undef TN
#undef O
}SEG;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i,H=1,T=1; for (F.read(n),F.read(m),i=2;i<=n;++i)
F.read(L[i]),F.read(R[i]),rst[++cnt]=L[i],rst[++cnt]=R[i],F.read(dis[i]);
sort(rst+1,rst+cnt+1); cnt=unique(rst+1,rst+cnt+1)-rst-1;
for (i=2;i<=n;++i) L[i]=find(L[i]),R[i]=find(R[i]);
for (SEG.build(),SEG.insert(L[1]=q[1]=1,R[1]=cnt,1),i=2;i<=n;++i)
{
while (H<=T&&dis[i]-dis[q[H]]>m) pos=q[H++],SEG.remove(L[pos],R[pos],pos);
ans[i]=SEG.query(L[i],R[i]); if (ans[i]!=INF)
F.write(++ans[i]),SEG.insert(L[i],R[i],i),q[++T]=i; else F.write(-1);
}
return F.Fend(),0;
}
BZOJ 1171: 大sz的游戏的更多相关文章
- bzoj 1171 大sz的游戏& 2892 强袭作战 (线段树+单调队列+永久性flag)
大sz的游戏 Time Limit: 50 Sec Memory Limit: 357 MBSubmit: 536 Solved: 143[Submit][Status][Discuss] Des ...
- 【BZOJ-2892&1171】强袭作战&大sz的游戏 权值线段树+单调队列+标记永久化+DP
2892: 强袭作战 Time Limit: 50 Sec Memory Limit: 512 MBSubmit: 45 Solved: 30[Submit][Status][Discuss] D ...
- [BZOJ1171][BZOJ2892]大sz的游戏
[BZOJ1171][BZOJ2892]大sz的游戏 试题描述 大sz最近在玩一个由星球大战改编的游戏.话说绝地武士当前共控制了N个星球.但是,西斯正在暗处悄悄地准备他们的复仇计划.绝地评议会也感觉到 ...
- BZOJ1171: 大sz的游戏&BZOJ2892: 强袭作战
Description 大sz最近在玩一个由星球大战改编的游戏.话说绝地武士当前共控制了N个星球.但是,西斯正在暗处悄悄地准备他们的复仇计划.绝地评议会也感觉到了这件事.于是,准备加派绝地武士到各星球 ...
- 【BZOJ1171】大sz的游戏(线段树+单调队列)
点此看题面 大致题意: 有\(n\)个点,两点间最大通讯距离为\(L\).已知除\(1\)号点外第\(i\)个点能够发出和接收的信号区间\([l_i,r_i]\)以及到\(1\)号点的距离\(dis_ ...
- BZOJ1171 : 大sz的游戏
f[i]=min(f[j])+1,线段j与线段i有交,且l[i]-l[j]<=L. 线段j与线段i有交等价于y[j]>=x[i],x[j]<=y[i]. 因为l[i]递增,所以可以维 ...
- BZOJ 3684 大朋友和多叉树
BZOJ 3684 大朋友和多叉树 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的: ...
- BZOJ 1444:[JSOI2009]有趣的游戏
BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...
- [BZOJ 3652]大新闻
[BZOJ 3652] 大新闻 题意 随机从 \([0,n)\) 中选取一个整数 \(x\), 并从 \([0,n)\) 中再选取一个整数 \(y\). 有 \(p\) 的概率选取一个能令 \(x\o ...
随机推荐
- iOS可视化动态绘制八种排序过程(Swift版)
前面几篇博客都是关于排序的,在之前陆陆续续发布的博客中,我们先后介绍了冒泡排序.选择排序.插入排序.希尔排序.堆排序.归并排序以及快速排序.俗话说的好,做事儿要善始善终,本篇博客就算是对之前那几篇博客 ...
- numpy操作
python中使用了numpy的一些操作,特此记录下来: 生成矩阵,替换值 import numpy as np # 生成一行10列的矩阵 dataset = np.zeros((1, 10)) # ...
- Mybatis之旅第三篇-SqlMapConfig.xml全局配置文件解析
一.前言 刚换工作,为了更快的学习框架和了解业务,基本每天都会加班,导致隔了几天没有进行总结,心里总觉得不安,工作年限越长越感到学习的重要性,坚持下去!!! 经过前两篇的总结,已经基本掌握了mybat ...
- SLAM+语音机器人DIY系列:(三)感知与大脑——3.轮式里程计与运动控制
摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人.实现的关键是让机器人能通过传感器感知周围环境,并通过 ...
- jQuery(四)、文档处理
1 内部插入 1.1 append(content | fn) 向每个匹配的元素内部追加内容. 参数: (1) content:要追加到目标中的内容. (2) function(index, html ...
- 前后端分离密码登陆加密RSA方案(java后端)
前言:密码加密有很多种方案,这里不做过多讨论,本篇文章是基于RSA加密实现. 首先在前端工程中需要引入加密js: "jsencrypt": "2.3.1",(注 ...
- maven的项目目录解析
target文件夹用于存放项目编译后产生的class文件.
- EF时,数据库字段和实体类不一致问题
场景:由于一些原因,实体中属性比数据库中字段多了一个startPage属性.PS:controllers中用实体类去接收参数,但是传入的参数比数据库中实体表多了一个字段, 这种情况下,应该建一个vie ...
- qsv文件转码mp4格式过程记录
之前帮一个朋友剪辑配音视频,源文件在爱奇艺里,特有的qsv格式让我白忙活一下午. 晚上趁着有空,在网上查找资料,翻阅了很多文件,都让我无从下手. 基本都是一个套路,转成fiv格式,再转mp4格式,但是 ...
- 【土旦】Vue+WebSocket 实现长连接
1.websocket 连接代码 created() { this.initWebsocket() }, methods: { // 初始化websocket initWebsocket() { le ...