P3711 仓鼠的数学题

题意:

\[S_m(x) = \sum_{k=0}^x k^m, 0^0=1\quad 求 \sum_{m=0}^n S_m(x)a_m
\]

的答案多项式\(\sum_{i=0}^{n+1}c_ix^i\)各项系数


一开始用了\(B^-\),然后后面要展开\((x+1)^k\),完全不会做

和出题人fjzzq2002讨论了一下,原来标程用的是\(B^+\),不需要展开了

那就很简单了...不想写过程了,最后的结果就是

\[C_t = \frac{1}{t!} \sum_{m=0}^{n+t} f_m h_{m+1-t} \\
f(x) = \sum_{i=0}^n a_i i!,\ g(x) = \sum_{i=0}^n \frac{B_i^+}{i!},\ h_i = g_{n+1-i}
\]

然后我发现用\(B^+\)好像没有常数项啊?但是用\(B^-\)写暴力计算确实有常数项

然后发现常数项就是\(a_0\),交上就过了...


update:去问了张队长,然后意识到,\(B^+\)算的和是从1开始...然后常数项就是\(a_0 0^0 = a_0\)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<20) + 5, P = 998244353, mo = P, inv2 = (P+1)/2;
const double PI = acos(-1.0);
inline int read(){
char c=getchar(); int x=0,f=1;
while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
return x*f;
} inline int Pow(ll a, int b) {
ll ans = 1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
namespace fft {
int rev[N], g = 3;
void dft(int *a, int n, int flag) {
int k = 0; while((1<<k) < n) k++;
for(int i=0; i<n; i++) {
rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
if(i < rev[i]) swap(a[i], a[rev[i]]);
}
for(int l=2; l<=n; l<<=1) {
int m = l>>1, wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l);
for(int *p = a; p != a+n; p += l)
for(int k=0, w=1; k<m; k++, w = (ll)w*wn %P) {
int t = (ll) p[k+m] * w %P;
p[k+m] = (p[k] - t + P) %P;
p[k] = (p[k] + t) %P;
}
}
if(flag == -1) {
ll inv = Pow(n, P-2);
for(int i=0; i<n; i++) a[i] = a[i] * inv %P;
}
} int t[N];
void inverse(int *a, int *b, int l) {
if(l == 1) {b[0] = Pow(a[0], P-2); return;}
inverse(a, b, l>>1);
int n = l<<1;
for(int i=0; i<l; i++) t[i] = a[i], t[i+l] = 0;
dft(t, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) b[i] * (2 - (ll) b[i] * t[i] %P + P) %P;
dft(b, n, -1); for(int i=l; i<n; i++) b[i] = 0;
} void mul(int *a, int *b, int n) {
dft(a, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) a[i] = (ll) a[i] * b[i] %P;
dft(a, n, -1);
}
} int n, a[N], len;
ll inv[N], fac[N], facInv[N];
int q[N], b[N], f[N], g[N];
int main() {
freopen("in", "r", stdin);
n=read();
for(int i=0; i<=n; i++) a[i] = read(); inv[1] = fac[0] = facInv[0] = 1;
for(int i=1; i<=n+2; i++) {
if(i != 1) inv[i] = (P - P/i) * inv[P%i] %P;
fac[i] = fac[i-1] * i %P;
facInv[i] = facInv[i-1] * inv[i] %P;
} len = 1; while(len <= n+1) len <<= 1;
for(int i=0; i<=n+1; i++) q[i] = facInv[i+1];
fft::inverse(q, b, len);
for(int i=0; i<=n+1; i++) b[i] = b[i] * fac[i] %P;
b[1] = inv2; for(int i=0; i<=n; i++) f[i] = (ll) a[i] * fac[i] %P;
for(int i=0; i<=n; i++) g[n+1-i] = (ll) b[i] * facInv[i] %P;
while(len <= n+n+1) len <<= 1;
fft::mul(f, g, len);
printf("%d ", a[0]);
for(int i=1; i<=n+1; i++) printf("%lld ", f[n+i] * facInv[i] %P);
}

洛谷 P3711 仓鼠的数学题 [伯努利数 fft]的更多相关文章

  1. 洛谷 P3711 - 仓鼠的数学题(多项式)

    洛谷题面传送门 提供一种不太一样的做法. 假设要求的多项式为 \(f(x)\).我们考察 \(f(x)-f(x-1)\),不难发现其等于 \(\sum\limits_{i=0}^na_ix^i\) 考 ...

  2. 洛谷P3711 仓鼠的数学题(伯努利数+多项式求逆)

    题面 传送门 题解 如果您不知道伯努利数是什么可以去看看这篇文章 首先我们把自然数幂和化成伯努利数的形式 \[\sum_{i=1}^{n-1}i^k={1\over k+1}\sum_{i=0}^k{ ...

  3. 洛谷 P3711 仓鼠的数学题【伯努利数+多项式科技】

    有个东西叫伯努利数--一开始直接·用第一类斯特林推到自闭 式子来源:https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3711 https ...

  4. 洛谷P3412 仓鼠找$Sugar\ II$题解(期望+统计论?)

    洛谷P3412 仓鼠找\(Sugar\ II\)题解(期望+统计论?) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327573 原题链接:洛谷P3412 ...

  5. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

  6. 洛谷p3398仓鼠找suger题解

    我现在爱死树链剖分了 题目 具体分析的话在洛谷blog里 这里只是想放一下改完之后的代码 多了一个son数组少了一个for 少了找size最大的儿子的for #include <cstdio&g ...

  7. 伯努利数学习笔记&&Luogu P3711 仓鼠的数学题

    新科技 Luogu P3711 题意 设$ S_{k,n}$表示$ \displaystyle\sum_{i=0}^n i^k$ 求多项式$\displaystyle\sum_{k=0}^n S_{k ...

  8. 洛谷P3398 仓鼠找sugar

    题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室(c) ...

  9. 洛谷P3398 仓鼠找sugar [LCA]

    题目传送门 仓鼠找sugar 题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而 ...

随机推荐

  1. 二分查找c++简单模板

    //数组a[]中有n各元素,已经按升序排序,待查找的元素x sort(a,a+n); //升序排序 template<class Type> int BinarySearch(Type a ...

  2. hdu_1754I Hate It(线段树)

    hdu_1754I Hate It(线段树) 标签: 线段树 题目链接 题意: 中文题意...不多说了,线段树基础题 直接上代码: #include<cstdio> #include< ...

  3. [国嵌攻略][155][I2C用户态驱动设计]

    用户态驱动模型 用户态驱动模型首先是一个应用程序,其次是在这个用户程序中通过内核调用来驱动设备. IIC通用驱动代码 IIC通用驱动程序的代码在/drivers/i2c/i2c-dev.c中.一次读操 ...

  4. 狗书无敌,天下第一(flask基础)

    为什么选择使用flask? 和其他框架相比, Flask 之所以能脱颖而出,原因在于它让开发者做主,使其能对程序具有全面的创意控制. 在 Flask 中,你可以自主选择程序的组件,如果找不到合适的,还 ...

  5. C#中的基元类型、值类型和引用类型

    C# 中的基元类型.值类型和引用类型 1. 基元类型(Primitive Type) 编译器直接支持的类型称为基元类型.基元类型可以直接映射到 FCL 中存在的类型.例如,int a = 10 中的 ...

  6. MyEclipse或Eclipse导出JavaDoc中文乱码问题解决

  7. Java数据持久层框架 MyBatis之API学习一(简介)

    对于MyBatis的学习而言,最好去MyBatis的官方文档:http://www.mybatis.org/mybatis-3/zh/index.html 对于语言的学习而言,马上上手去编程,多多练习 ...

  8. 使用VSCode和VS2017编译调试STM32程序

    近两年,微软越来越拥抱开源支持跨平台,win10搭载Linux子系统,开源VSCode作为跨平台编辑器,VS2017官方支持了Linux和嵌入式开发功能. ST也是,近两年开发的软件工具基本都是跨平台 ...

  9. JavaScript学习日志:关于js分号

    javascript有自动添加分号的功能,但是不是所有情况都会自动添加,要区分: 1,如果语句独占一行 如果当前行内的语句能够被js正确解析,那么就会在句尾添加一个分号. (如何判断是否正确解析?你在 ...

  10. Android开发之漫漫长途 XIII——Fragment最佳实践

    该文章是一个系列文章,是本人在Android开发的漫漫长途上的一点感想和记录,我会尽量按照先易后难的顺序进行编写该系列.该系列引用了<Android开发艺术探索>以及<深入理解And ...