4830: [Hnoi2017]抛硬币

题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\)。

\(b \le a \le b+10000 \le 10^{15}, k \le 9\)


几乎一下午和一晚上杠这道题...中间各种翻《具体数学》各种卡常

有两种做法,这里只说我认为简单的一种。


题目就是要求

\[\sum_{i=0}^a \sum_{j=0}^b [i>j] \binom{a}{i} \binom{b}{j}
\]

化一化得到

\[\sum_{i=1}^a \sum_{j=0}^{a-i} \binom{a}{i+j} \binom{b}{b-j}
\]

根据范德蒙德卷积,得到

\[\sum_{i=b+1}^{a+b} \binom{a+b}{i}
\]

然而并不会计算...根据题目范围显然应该与a,b的差相关...


参考了这里

把这个组合数拆成两部分计算:

\[\sum_{i=\lceil \frac{a+b}{2} \rceil}^{a+b} \binom{a+b}{i}+ \sum_{i=b+1}^{\lfloor \frac{a+b}{2} \rfloor} \binom{a+b}{i}
\]

\(a+b\)为奇数时前一部分就是\(2^{a+b-1}\)。

注意判断\(a+b\)为偶数的时候,要减去\(\frac{1}{2} \binom{a+b}{(a+b)/2}\)


因为模数特殊需要使用扩展lucas定理

但是\(10^9\)直接用会T...

10只有2和5两个质因子,预处理不能整除2或5的数的阶乘就没问题了。


关于模意义再提两点:

  1. \(a \equiv b \pmod {md} \rightarrow a\equiv b \pmod m\),所以可以放在\(10^9\)下做
  2. 组合数除以2,对于\(2^a\)这个质因子2的逆元不存在,我们只能把指数减1.然后2的指数有可能本来就为0,所以不是所有组合数都能除以2(有的本来就是奇数啊),可以证明\(\binom{2n}{n}\)为偶数


最后还有一个卡常技巧

如果\(p\)指数大于9不要继续计算了...节省好多常数

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ctime>
using namespace std;
typedef long long ll;
const int N=2e6+5;
int mo, p2, p5; ll a, b; int k;
inline ll Pow(ll a, ll b, ll mo) {
ll ans=1;
for(; b; b>>=1, a=a*a%mo)
if(b&1) ans=ans*a%mo;
return ans;
}
inline ll Inv(ll a, ll n) {return Pow(a, ((n&1) ? n/5*4 : n/2) - 1, n);} ll fac2[N], fac5[N];
inline ll Fac(ll n, ll p, ll pr) {
if(n == 0) return 1;
ll ans = 1;
if(p == 2) ans = fac2[pr] %pr; else ans = fac5[pr] %pr;
ans = Pow(ans, n/pr, pr);
if(p == 2) ans = ans * fac2[n%pr] %pr; else ans = ans * fac5[n%pr] %pr;
return ans * Fac(n/p, p, pr) %pr;
}
ll cou(ll n, ll p) { ll ans = 0; for(ll i=n; i; i/=p) ans += i/p; return ans; } ll C(ll n, ll m, bool div2=0) {
if(n < m) return 0; ll ans = 0, a = 0, t;
{
ll p = 2, pr = p2;
ll c = cou(n, p) - cou(m, p) - cou(n-m, p);
if(div2) t = Pow(p, --c, pr);
else t = Pow(p, c, pr); if(c<9) {
a = Fac(n, p, pr) * Inv(Fac(m, p, pr), pr) %pr * Inv(Fac(n-m, p, pr), pr) %pr * t %pr;
a = a * (mo/pr) %mo * Inv(mo/pr, pr) %mo;
ans = (ans + a) %mo;
}
}
{
ll p = 5, pr = p5;
ll c = cou(n, p) - cou(m, p) - cou(n-m, p);
t = Pow(p, c, pr);
if(div2) t = t * Inv(2, pr) %pr; if(c<9) {
a = Fac(n, p, pr) * Inv(Fac(m, p, pr), pr) %pr * Inv(Fac(n-m, p, pr), pr) %pr * t %pr;
a = a * (mo/pr) %mo * Inv(mo/pr, pr) %mo;
ans = (ans + a) %mo;
}
} return ans;
} char c[50];
void print(ll ans) {
for(int i=0; i<20; i++) c[i] = '0';
int p=0;
while(ans) c[++p] = ans%10 + '0', ans /= 10;
for(int i=k; i>=1; i--) putchar(c[i]); puts("");
} void init(int k) {
fac2[0] = 1; p2 = Pow(2, k, 1e9);
for(int i=1; i<=p2; i++) fac2[i] = fac2[i-1] * (i%2 ? i : 1) %p2; fac5[0] = 1; p5 = Pow(5, k, 1e9);
for(int i=1; i<=p5; i++) fac5[i] = fac5[i-1] * (i%5 ? i : 1) %p5;
} int main() {
freopen("in", "r", stdin);
init(9); mo = 1e9;
while(scanf("%lld %lld %d", &a, &b, &k) != EOF) {
ll ans = Pow(2, a+b-1, mo);
for(ll i=b+1; i<=(a+b)/2; i++) ans = (ans + C(a+b, i)) %mo;
if(~(a+b)&1) ans = (ans - C(a+b, (a+b)>>1, 1) + mo) %mo;
int t = 1; for(int i=1; i<=k; i++) t *= 10; ans %= t;
print(ans);
}
//printf("time %lf\n", (double) clock()/CLOCKS_PER_SEC);
}

bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]的更多相关文章

  1. bzoj 4830: [Hnoi2017]抛硬币

    Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...

  2. 【刷题】BZOJ 4830 [Hnoi2017]抛硬币

    Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...

  3. 【题解】幼儿园篮球题(范德蒙德卷积+斯特林+NTT)

    [题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i ...

  4. 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)

    [BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...

  5. luogu P3726 [AH2017/HNOI2017]抛硬币

    传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...

  6. 题解 洛谷 P3726 【[AH2017/HNOI2017]抛硬币】

    可以分别枚举两人正面朝上的次数来统计答案,所求即为 \[\sum_{i=0}^{a}\sum_{j=0}^{b} \binom{a}{i} \binom{b}{j} [i>j] \] 将\(i\ ...

  7. [AH2017/HNOI2017]抛硬币

    传送门 这个题的暴力比较好想--然后用一些组合的知识就可以变成正解了. 首先我们考虑a=b的情况.我们把扔出来的硬币看成是一个01序列,那么对于一个b获胜的序列,他在每一位都按位异或1之后必然是一个a ...

  8. Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]

    题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...

  9. 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理

    浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...

随机推荐

  1. BZOJ2565: 最长双回文串(回文树)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2565 记录一下每个点往前最长延伸位置,正反两遍,枚举分割点. #include<cstr ...

  2. Codeforces__Raising Bacteria

    题目传送门:Raising Bacteria //问题描述:一个盒子里面放一个细菌在一天可以增生两个细菌. 现在已知盒子里面细菌的个数,问你最初放多少个细菌可以增生盒子里面的细菌数量 //输入:盒子中 ...

  3. net+Oracle开发过程中遇到的小问题

    最新的项目开始使用Oracle后,5个月之间遇到一些在SqlServer中没有遇到的问题,这里记录并贴上一些常用的解决办法. Oracle相关 一.数据库不同版本还原: 刚开始我们一直使用Oracle ...

  4. Java入门篇(四)——数组

    上篇在foreach中有引入一个数组的概念,数组是最为常见的一种数据结构,是相同类型的.用一个标识符封装到一起的基本类型数据序列或对象序列. 数组是具有相同数据类型的一组数据的集合,根据维数不同可以分 ...

  5. for循环去重排序

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  6. JQuery常用知识点及示例

    1.JQuery 名称解释 JQuery是封装了常用JS操作函数的一个库文件JQuery = Javascript + Query (查询)Jquery意思即指: 强大的DOM节点查询 2.官网:ht ...

  7. 关于STM32驱动DS1302实时时钟的一点思考

    之前用51驱动过DS1302,没用多久就输出了正确的时间.当时以为这块芯片其实没啥,很简单.但是现在用STM32做项目,用到同样的芯片,以为这有何难,只要把那个程序拿过来复制黏贴改一下IO设置不就行了 ...

  8. tp5命名空间

  9. WIN2016安装织梦没写入权限怎么办听语音

    配置好了WINSERVER2016环境,一切看起来都弄得差不多了,可是安装织梦的时候提示我没有写入权限,不能继续安装,于是我很郁闷,开始寻求解决办法. 工具/原料 WINSERVER2016 织梦5. ...

  10. [sklearn]官方例程-Imputing missing values before building an estimator 随机填充缺失值

    官方链接:http://scikit-learn.org/dev/auto_examples/plot_missing_values.html#sphx-glr-auto-examples-plot- ...