bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币
题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\)。
\(b \le a \le b+10000 \le 10^{15}, k \le 9\)
几乎一下午和一晚上杠这道题...中间各种翻《具体数学》各种卡常
有两种做法,这里只说我认为简单的一种。
题目就是要求
\]
化一化得到
\]
根据范德蒙德卷积,得到
\]
然而并不会计算...根据题目范围显然应该与a,b的差相关...
把这个组合数拆成两部分计算:
\]
\(a+b\)为奇数时前一部分就是\(2^{a+b-1}\)。
注意判断\(a+b\)为偶数的时候,要减去\(\frac{1}{2} \binom{a+b}{(a+b)/2}\)
因为模数特殊需要使用扩展lucas定理
但是\(10^9\)直接用会T...
10只有2和5两个质因子,预处理不能整除2或5的数的阶乘就没问题了。
关于模意义再提两点:
- \(a \equiv b \pmod {md} \rightarrow a\equiv b \pmod m\),所以可以放在\(10^9\)下做
- 组合数除以2,对于\(2^a\)这个质因子2的逆元不存在,我们只能把指数减1.然后2的指数有可能本来就为0,所以不是所有组合数都能除以2(有的本来就是奇数啊),可以证明\(\binom{2n}{n}\)为偶数
最后还有一个卡常技巧:
如果\(p\)指数大于9不要继续计算了...节省好多常数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ctime>
using namespace std;
typedef long long ll;
const int N=2e6+5;
int mo, p2, p5;
ll a, b; int k;
inline ll Pow(ll a, ll b, ll mo) {
ll ans=1;
for(; b; b>>=1, a=a*a%mo)
if(b&1) ans=ans*a%mo;
return ans;
}
inline ll Inv(ll a, ll n) {return Pow(a, ((n&1) ? n/5*4 : n/2) - 1, n);}
ll fac2[N], fac5[N];
inline ll Fac(ll n, ll p, ll pr) {
if(n == 0) return 1;
ll ans = 1;
if(p == 2) ans = fac2[pr] %pr; else ans = fac5[pr] %pr;
ans = Pow(ans, n/pr, pr);
if(p == 2) ans = ans * fac2[n%pr] %pr; else ans = ans * fac5[n%pr] %pr;
return ans * Fac(n/p, p, pr) %pr;
}
ll cou(ll n, ll p) { ll ans = 0; for(ll i=n; i; i/=p) ans += i/p; return ans; }
ll C(ll n, ll m, bool div2=0) {
if(n < m) return 0;
ll ans = 0, a = 0, t;
{
ll p = 2, pr = p2;
ll c = cou(n, p) - cou(m, p) - cou(n-m, p);
if(div2) t = Pow(p, --c, pr);
else t = Pow(p, c, pr);
if(c<9) {
a = Fac(n, p, pr) * Inv(Fac(m, p, pr), pr) %pr * Inv(Fac(n-m, p, pr), pr) %pr * t %pr;
a = a * (mo/pr) %mo * Inv(mo/pr, pr) %mo;
ans = (ans + a) %mo;
}
}
{
ll p = 5, pr = p5;
ll c = cou(n, p) - cou(m, p) - cou(n-m, p);
t = Pow(p, c, pr);
if(div2) t = t * Inv(2, pr) %pr;
if(c<9) {
a = Fac(n, p, pr) * Inv(Fac(m, p, pr), pr) %pr * Inv(Fac(n-m, p, pr), pr) %pr * t %pr;
a = a * (mo/pr) %mo * Inv(mo/pr, pr) %mo;
ans = (ans + a) %mo;
}
}
return ans;
}
char c[50];
void print(ll ans) {
for(int i=0; i<20; i++) c[i] = '0';
int p=0;
while(ans) c[++p] = ans%10 + '0', ans /= 10;
for(int i=k; i>=1; i--) putchar(c[i]); puts("");
}
void init(int k) {
fac2[0] = 1; p2 = Pow(2, k, 1e9);
for(int i=1; i<=p2; i++) fac2[i] = fac2[i-1] * (i%2 ? i : 1) %p2;
fac5[0] = 1; p5 = Pow(5, k, 1e9);
for(int i=1; i<=p5; i++) fac5[i] = fac5[i-1] * (i%5 ? i : 1) %p5;
}
int main() {
freopen("in", "r", stdin);
init(9); mo = 1e9;
while(scanf("%lld %lld %d", &a, &b, &k) != EOF) {
ll ans = Pow(2, a+b-1, mo);
for(ll i=b+1; i<=(a+b)/2; i++) ans = (ans + C(a+b, i)) %mo;
if(~(a+b)&1) ans = (ans - C(a+b, (a+b)>>1, 1) + mo) %mo;
int t = 1; for(int i=1; i<=k; i++) t *= 10; ans %= t;
print(ans);
}
//printf("time %lf\n", (double) clock()/CLOCKS_PER_SEC);
}
bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]的更多相关文章
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- 【刷题】BZOJ 4830 [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- 【题解】幼儿园篮球题(范德蒙德卷积+斯特林+NTT)
[题解]幼儿园篮球题(NTT+范德蒙德卷积+斯特林数) 题目就是要我们求一个式子(听说叫做超几何分布?好牛逼的名字啊) \[ \sum_{i=1}^{S}\dfrac 1 {N \choose n_i ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- 题解 洛谷 P3726 【[AH2017/HNOI2017]抛硬币】
可以分别枚举两人正面朝上的次数来统计答案,所求即为 \[\sum_{i=0}^{a}\sum_{j=0}^{b} \binom{a}{i} \binom{b}{j} [i>j] \] 将\(i\ ...
- [AH2017/HNOI2017]抛硬币
传送门 这个题的暴力比较好想--然后用一些组合的知识就可以变成正解了. 首先我们考虑a=b的情况.我们把扔出来的硬币看成是一个01序列,那么对于一个b获胜的序列,他在每一位都按位异或1之后必然是一个a ...
- Codeforces 785D - Anton and School - 2 - [范德蒙德恒等式][快速幂+逆元]
题目链接:https://codeforces.com/problemset/problem/785/D 题解: 首先很好想的,如果我们预处理出每个 "(" 的左边还有 $x$ 个 ...
- 浅谈范德蒙德(Vandermonde)方阵的逆矩阵的求法以及快速傅里叶变换(FFT)中IDFT的原理
浅谈范德蒙德(Vandermonde)方阵的逆矩阵与拉格朗日(Lagrange)插值的关系以及快速傅里叶变换(FFT)中IDFT的原理 标签: 行列式 矩阵 线性代数 FFT 拉格朗日插值 只要稍微看 ...
随机推荐
- RabbitMQ 使用demo
1.新建一个控制台应用程序:如图 2.代码如下: using RabbitMQ.Client;using RabbitMQ.Client.Events;using System;using Syste ...
- 教你上传本地代码到github转载
原创 2015年07月03日 10:47:13 标签: 上传代码github 转载请标明出处: http://blog.csdn.net/hanhailong726188/article/deta ...
- 自己编写JavaScript的sort函数
在平常开发中我们经常会遇到对数组进行排序的场景,js给我们提供了sort方法可以对数组元素进行排序,默认是按ASCII字母表顺序排序,请看下面例子: var a = [1, 3, 2, 4];var ...
- 工作小结(关于webpack)
今天在工作中遇到了一个新问题,是关于webpack的. 是这样的,我在项目中添加了一个新页面,修改完配置文件后,开始运行,刚开始并没有什么问题,很顺利,后来我又添加了一个页面,然后修改配置文件,然后运 ...
- VIM命令模式与输入模式切换
vi编辑器 vi是UNIX和类UNIX环境下的可用于创建文件的屏幕编辑器.vi有两种工作模式:命令模式和文本输入模式.启动vi需要输入vi,按[Spacebar]键并输入文件名后回车. 切换模式键 ...
- asp.net -mvc框架复习(6)-基于MVC实现简单计算器
1.创建好文件夹 2.视图层代码编写 <%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage<dyn ...
- virtuoso装载大的rdf文件的方法
本文详细介绍了将一个比较大的rdf文件装载到virtuoso数据库的过程.参考virtuoso网站的文档说明,通过实践,将一个大约4.6G左右的nt文件装载到virtuoso数据库中,用了大概6个多小 ...
- Java 获取年月日方法
package com.ob; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util ...
- python_如何使用临时文件
案例: 某项目中,从传感器中获得采集数据,每收集到1G的数据后做是数据分析,最终只保留数据分析的结果,收集到的数据放在内存中,将会消耗大量内存,我们希望把这些数据放到一个临时的文件中 临时文件不能命名 ...
- Servlet--HttpServletRequest一些不常用的方法
我们在使用Servlet和表单进行交互的时候,不管是传参和接参经常要写一些路径.关于具体的Servlet的传参和接参我后面会有详细的整理,这里先整理一下不怎么常用的到一些HttpServletRequ ...