使用caffe训练mnist数据集 - caffe教程实战(一)
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始。
学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe
卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html
Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html
先讲解一下caffe设计的架构吧:

训练mnist数据集使用 build/tools/caffe
训练步骤:
准备数据:
cd $CAFFE_ROOT //安装caffe的根目录./data/mnist/get_mnist.sh //下载mnist数据集
./examples/mnist/create_mnist.sh //将图片转为lmdb数据格式
定义网络模型:
首先定义数据层:
layer {
name: "mnist" //名字可以随便写 字符串类型
type: "Data" //类型 必须是 Data 字符串类型
transform_param {
scale: 0.00390625
}
data_param {
source: "mnist_train_lmdb"
backend: LMDB
batch_size: 64
}
top: "data"
top: "label"
}
定义卷基层:
layer {
name: "conv1"
type: "Convolution"
param { lr_mult: 1 } #定义w参数的学习率
param { lr_mult: 2 } #定义b参数的学习率
convolution_param {
num_output: 20 #定义输出map数量
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "data"
top: "conv1"
}
定义pool层:
layer {
name: "pool1"
type: "Pooling"
pooling_param {
kernel_size: 2
stride: 2
pool: MAX
}
bottom: "conv1"
top: "pool1"
}
定义全连接层:
layer {
name: "ip1"
type: "InnerProduct"
param { lr_mult: 1 }
param { lr_mult: 2 }
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "pool2"
top: "ip1"
}
定义relu层:
layer {
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "ip1"
}
再定义一个全连接层: 注意这里的输出为 分类的个数layer {
name: "ip2"
type: "InnerProduct"
param { lr_mult: 1 }
param { lr_mult: 2 }
inner_product_param {
num_output: 10 #表示有10个类别 从0-9个数字
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
bottom: "ip1"
top: "ip2"
}
最后定义 损失函数
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
}
定义好网络模型后,需要定义 模型训练的策略, solver
# The train/test net protocol buffer definition
net: "examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
# solver mode: CPU or GPU
solver_mode: GPU #使用gpu进行训练
开始训练网络:
cd $CAFFE_ROOT
./examples/mnist/train_lenet.sh
你会看到类似下面的输出:
I1203 net.cpp:66] Creating Layer conv1
I1203 net.cpp:76] conv1 <- data
I1203 net.cpp:101] conv1 -> conv1
I1203 net.cpp:116] Top shape: 20 24 24
I1203 net.cpp:127] conv1 needs backward computation.
。。。。。
I1203 net.cpp:142] Network initialization done.
I1203 solver.cpp:36] Solver scaffolding done.
I1203 solver.cpp:44] Solving LeNet
。。。。。
I1203 solver.cpp:84] Testing net
I1203 solver.cpp:111] Test score #0: 0.9897
I1203 solver.cpp:111] Test score #1: 0.0324599
I1203 solver.cpp:126] Snapshotting to lenet_iter_10000
I1203 solver.cpp:133] Snapshotting solver state to lenet_iter_10000.solverstate
I1203 solver.cpp:78] Optimization Done.
结束
运行结构图:

接下来的教程会结合源码详细展开 这三部做了什么 看懂caffe源码
欢迎加入深度学习交流群,群号码:317703095
使用caffe训练mnist数据集 - caffe教程实战(一)的更多相关文章
- 实践详细篇-Windows下使用VS2015编译的Caffe训练mnist数据集
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下 ...
- ubuntu16.04+caffe训练mnist数据集
1. caffe-master文件夹权限修改 下载的caffe源码编译的caffe-master文件夹貌似没有写入权限,输入以下命令修改: sudo chmod -R 777 ~/caffe-ma ...
- Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html 摘要 在前面的博文中,我详细介绍了Caf ...
- windows下使用caffe测试mnist数据集
在win10机子上装了caffe,感谢大神们的帖子,要入坑caffe-windows的朋友们看这里,还有这里,安装下来基本没什么问题. 好了,本博文写一下使用caffe测试mnist数据集的步骤. 1 ...
- 【Mxnet】----1、使用mxnet训练mnist数据集
使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list
- TensorFlow 训练MNIST数据集(2)—— 多层神经网络
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码 ...
- TensorFlow训练MNIST数据集(1) —— softmax 单层神经网络
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import inp ...
- 搭建简单模型训练MNIST数据集
# -*- coding = utf-8 -*- # @Time : 2021/3/16 # @Author : pistachio # @File : test1.py # @Software : ...
- MXNet学习-第一个例子:训练MNIST数据集
一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #num ...
随机推荐
- MySQL增量订阅&消费组件Canal POC
POC的目的:1.与MYSQL的对接方式,配置文档2.订阅的延迟3.订阅后宕机消息会不会丢失4.能不能从指定的点开始重新订阅5.高并发写入的时候,日志的顺序是否还能保持,不考虑消费的情况订阅是否会延迟 ...
- 在 WinForm 中 如何实现 加载等待功能
1,需要一个动态的londing文件:在项目中我们新建一个文件夹来存放它: 2,在需要出现londing状态的窗体上加上一个Panel: 黄色区域是Panel,灰色的是需要被加载的区域.当需要触发lo ...
- handsontable 合并单元格
<!DOCTYPE html> <html> <head> <title>handsontable demo</title> <met ...
- Java计算当前日期前后几天是哪一天:
计算1900年11月19日往后1000天是哪一天 import java.util.Calendar; import java.util.Date; public class Main { publi ...
- Hadoop之Secondary NameNode
NameNode存储文件系统的变化作为log追加在本地的一个文件里:这个文件是edits.当一个NameNode启动时,它从一个映像文件:FsImage,读取HDFS的状态,使用来自edits日志文件 ...
- 【python学习笔记】6.抽象
[python学习笔记]6.抽象 创建函数: 使用def语句定义函数,不用声明参数类型,和返回值类型 def function_name(param1, param2): 'this is docum ...
- Shiro【授权过滤器、与ehcache整合、验证码、记住我】
前言 本文主要讲解的知识点有以下: Shiro授权过滤器使用 Shiro缓存 与Ehcache整合 Shiro应用->实现验证码功能 记住我功能 一.授权过滤器测试 我们的授权过滤器使用的是pe ...
- 笔记:Eclipse 安装 Hibernate Tools
在线安装,要求 Eclipse Neon 4.6 版本和Java 8,在 Help > Install New Software,在打开的窗体中的 Work with 中输入URL地址" ...
- SpringBoot 整合 Swagger2
1. Swagger UI 按以下步骤配置,项目启动后访问:http://localhost:8080/swagger-ui.html 1.1 添加依赖 <dependency> < ...
- 【眼见为实】自己动手实践理解READ COMMITTED && MVCC
[眼见为实]自己动手实践理解 READ COMMITTED && MVCC 首先设置数据库隔离级别为读已提交(READ COMMITTED): set global transacti ...