luoguP4231_三步必杀_差分

题意:N 个柱子排成一排,一开始每个柱子损伤度为0。接下来勇仪会进行M 次攻击,每次攻击可以用4个参数l,r ,s ,e 来描述:

表示这次攻击作用范围为第l个到第r 个之间所有的柱子(包含l ,r ),对第一个柱子的伤害为s ,对最后一个柱子的伤害为e 。

攻击产生的伤害值是一个等差数列。若l=1 ,r=5 ,s=2 ,e=10 ,则对第1~5个柱子分别产生2,4,6,8,10的伤害。

鬼族们需要的是所有攻击完成之后每个柱子的损伤度。

分析:等差数列差分后相当于区间加,再套一个差分可解。

差分套差分求两遍前缀和就是原数组。注意有几个需要差分的单点修改。

代码:

// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL long long
#define N 10000002
LL c[N];
LL n,m;
void read(LL &x){
int f=1;x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}x*=f;
}
int main(){
read(n),read(m);
LL l,r,s,t;
register int i;
for(i=1;i<=m;i++){
read(l),read(r),read(s),read(t);
if(l==r){
c[l]+=s;c[l+1]-=2*s;c[l+2]+=s;continue;
}
LL d=(t-s)/(r-l);
c[l]+=s;c[l+1]-=(s-d);c[r+1]-=((r-l)*d+s+d);c[r+2]+=((r-l)*d+s);
}
for(i=1;i<=n;i++){
c[i]+=c[i-1];
}
LL mx=0,sum=0;
for(i=1;i<=n;i++){
c[i]+=c[i-1];
mx=max(mx,c[i]);
sum^=c[i];
}
printf("%lld %lld",sum,mx);
}

luoguP4231_三步必杀_差分的更多相关文章

  1. 【Luogu】P4231三步必杀(差分,差分)

    题目链接 郑重宣布我以后真的再也不会信样例了,三种写法都能过 另:谁评的蓝题难度qwq 蓝题有这么恐怖吗 两次差分,第一次差分,前缀和求出增量数组,第二次求出原数组顺便更新答案 看题解之后……第二次差 ...

  2. Luogu P4231 三步必杀 (差分)

    目录 题目 题解 题目 题目链接 题目背景 (三)旧都 离开狭窄的洞穴,眼前豁然开朗. 天空飘着不寻常的雪花. 一反之前的幽闭,现在面对的,是繁华的街市,可以听见酒碗碰撞的声音. 这是由被人们厌恶的鬼 ...

  3. luogu P4231 三步必杀

    嘟嘟嘟 这道题就是区间加一个等差数列,然后最后求每一个数的值. O(n)做法:二阶差分. 其实就是差分两遍.举个例子 0 0 0 0 0 0 0,变成了 0 2 4 6 8 0 0.第一遍差分:0 2 ...

  4. 【luogu P4231 三步必杀】 题解

    题目链接:https://www.luogu.org/problemnew/show/P4231 诶 我很迷啊..这跟树状数组有什么关系啊...拿二阶差分数组过了..? #include <cs ...

  5. 洛谷P4231 三步必杀

    题目描述: $N$ 个柱子排成一排,一开始每个柱子损伤度为0. 接下来勇仪会进行$M$ 次攻击,每次攻击可以用4个参数$l$ ,$r$ ,$s$ ,$e$ 来描述: 表示这次攻击作用范围为第$l$ 个 ...

  6. [Luogu]三步必杀

    Description Luogu4231 Solution 我最近到底怎么了,这种题都做不出来了,一看题第一反应李超线段树(虽然不会),觉得不可做,看一眼题解才发现这个题可以差分,然后差分还打错了好 ...

  7. P4231 三步必杀

    题目描述 问题摘要: N个柱子排成一排,一开始每个柱子损伤度为0. 接下来勇仪会进行M次攻击,每次攻击可以用4个参数l,r,s,e来描述: 表示这次攻击作用范围为第l个到第r个之间所有的柱子(包含l, ...

  8. BZOJ_3436_小K的农场_差分约束

    BZOJ_3436_小K的农场_差分约束 题意: 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得 一些含糊的信息(共m个),以下列三种形式描述 ...

  9. Knative 实战:三步走!基于 Knative Serverless 技术实现一个短网址服务

    短网址顾名思义就是使用比较短的网址代替很长的网址.维基百科上面的解释是这样的: 短网址又称网址缩短.缩短网址.URL 缩短等,指的是一种互联网上的技术与服务,此服务可以提供一个非常短小的 URL 以代 ...

随机推荐

  1. iOS中用UILabel实现UITextView的占位文字

    @interface BSPublishTextView : UITextView /** 对外属性占位字符 placeholder */ @property (nonatomic, copy) NS ...

  2. Android 在Fragment中执行onActivityResult不被调用的简单解决方法

    在Android开发中,我们经常会用到FragmentActivity下嵌套多个Fragment,但是在开发过程中会发现在嵌套的Fragment中使用onActivityResult回调方法没有被执行 ...

  3. jquery性能优化的38个建议

    一.注意定义jQuery变量的时候添加var关键字 这个不仅仅是jQuery,所有javascript开发过程中,都需要注意,请一定不要定义成如下: $loading = $('#loading'); ...

  4. jBPM4工作流应用开发指南

    首先十分感谢作者给我这个机会在他的作品即将问世之前做一些感想,也正好让我能在忙碌中抽空回顾一下这么多年在技术平台方面走过的路以及在Workflow方面的点点滴滴.因为本书是介绍jBPM的专业书籍,所以 ...

  5. JS基础:this的指向以及call、apply的作用

    this 的指向 在具体的实际应用中,this 的指向无法在函数定义时确定,而是在函数执行的时候才确定的,根据执行时的环境大致可以分为以下3种: 1.当函数作为普通函数调用时,this 指向全局对象 ...

  6. python结巴(jieba)分词

    python结巴(jieba)分词 一.特点 1.支持三种分词模式: (1)精确模式:试图将句子最精确的切开,适合文本分析. (2)全模式:把句子中所有可以成词的词语都扫描出来,速度非常快,但是不能解 ...

  7. tar结果find打包指定后缀的文件

    find 目录名 -name "*.ini" | xargs tar czvf tarch.tar.gz  tar czf tmp.tar.gz tmp/ --exclude=&q ...

  8. Django-CKedtior图片找不到的问题

    从Django Packages站点上找到这个CKeditor集成组件:https://github.com/shaunsephton/django-ckeditor 按照官方的install方法安装 ...

  9. Mac下的Bash配置文件冲突问题

    Mac下默认的Bash配置文件是~/.profile.有的软件安装时会生成~/.bash_profiel.有了这个文件.之前的.profiel就不会再被加载,需要手动把里面的文件内容转移到.bash_ ...

  10. 关于.net 保存 decimal类型数据到SQLServer2012数据库时自动取整的问题

    公司同事问我有没有遇到过decimal类型数据入库时,会自动取整的问题(比如12.3入库后值是12,12.8入库后值是13,入库后自动四舍五入自动取整): 之前就遇到过从数据去decimal类型数据时 ...