题目链接:

  传送。

题解:

  矩阵快速幂优化DP。

  先考虑$nm^2$DP,设$f_{(i,j)}$表示从$1,1$到$i,j$的方案,显然这个方程和奇偶性有关,我们考虑某列的$i$同奇偶性的转移和奇偶性相异的贡献,很容易把刚才的方程变成$nm$的轮换式方程,即$f_{(0/1,j)}$表示偶/奇数列第$j$行的方案数。此时转移方程为$$f_{(i,j)}=f_{(i,j)}+\sum_{x=-1}^{1}f_{(i(xor)1,j+x)}$$

  然后考虑如何用矩阵优化,画图发现十字相乘时,如果我们把奇偶分成两列会没办法转移,然后考虑十字相乘性质,我们可以把奇偶两列转换为一列上的两段,这样我们构建$(2n)^2$的矩阵,至于递推矩阵,YY一下即可。

代码:

  

#define Troy 10/24/2017

#include <bits/stdc++.h>

using namespace std;

inline int read(){
int s=,k=;char ch=getchar();
while(ch<''|ch>'') ch=='-'?k=-:,ch=getchar();
while(ch>&ch<='') s=s*+(ch^),ch=getchar();
return s*k;
} const int mod=; int n,m; struct Matrix{
int a[][];
Matrix(){memset(a,,sizeof(a));}
inline void e1(){
for(int i=;i<=*n;i++)
a[i][i]=;
}
inline friend Matrix operator *(Matrix x,Matrix y){
Matrix z;
for(int i=;i<=*n;i++)
for(int j=;j<=*n;j++)
for(int k=;k<=*n;k++)
z.a[i][j]=(z.a[i][j]+x.a[i][k]*1ll*y.a[k][j])%mod;
return z;
}
inline friend Matrix operator ^(Matrix a,long long b){
Matrix ret;ret.e1();
while(b){
if(b&) ret=ret*a;
a=a*a;b>>=;
}return ret;
}
}; int main(){
n=read(),m=read();
if(m==){
puts(n==?"":"");
return ;
}
Matrix ans;
ans.a[+n][]=;
if(n>)
ans.a[+n][]=;
Matrix t;
for(int i=;i<=n;i++){
t.a[i][i+n]=;
t.a[i+n][i]=;
t.a[i+n][i+n]=;
if(i-)
t.a[i+n][i+n-]=;
if(i+<=n)
t.a[i+n][i+n+]=;
}
ans=(t^(m-))*ans;
printf("%d",ans.a[*n][]);
}

【BZOJ4417】: [Shoi2013]超级跳马的更多相关文章

  1. BZOJ4417: [Shoi2013]超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  2. [BZOJ 4417][Shoi2013]超级跳马

    4417: [Shoi2013]超级跳马 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 379  Solved: 230[Submit][Status ...

  3. 洛谷 P3990 [SHOI2013]超级跳马 解题报告

    P3990 [SHOI2013]超级跳马 题目描述 现有一个\(n\) 行 \(m\) 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘. ...

  4. [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化

    这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...

  5. 【bzoj4417】[Shoi2013]超级跳马 矩阵乘法

    题目描述 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可行的跳法.   ...

  6. [bzoj4417] [洛谷P3990] [Shoi2013] 超级跳马

    Description 现有一个n行m列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.例如,当n = 3, m = 10时,下图是一种可 ...

  7. Luogu P3990 [SHOI2013]超级跳马

    这道题还是一道比较不可做的矩阵题 首先我们先YY一个递推的算法:令f[i][j]表示走到第i行第j列时的方案数,那么有以下转移: f[i][j]=f[i-1][j-2*k+1]+f[i+1][j-2* ...

  8. P3990 [SHOI2013]超级跳马

    传送门 首先不难设\(f[i][j]\)表示跳到\((i,j)\)的方案数,那么不难得到如下转移 \[f[i][j]=\sum\limits_{k=1}^{\frac n2}f[i-2k+1][j-1 ...

  9. [SHOI2013]超级跳马

    题目描述 现有一个n 行m 列的棋盘,一只马欲从棋盘的左上角跳到右下角.每一步它向右跳奇数列,且跳到本行或相邻行.跳越期间,马不能离开棋盘.试求跳法种数mod 30011. 输入输出格式 输入格式: ...

随机推荐

  1. IT轮子系列(七)——winform 版本更新组件

    前言 最近做了一个winform客户端的项目,里面有一个功能是版本更新.以前也有写过,可忘了具体的逻辑.网上也有介绍用发布模式进行更新的,自己尝试后没有成功,提示“vba证书无效”.于是,费了些时间搜 ...

  2. 爬虫Scrapy框架运用----房天下二手房数据采集

    在许多电商和互联网金融的公司为了更好地服务用户,他们需要爬虫工程师对用户的行为数据进行搜集.分析和整合,为人们的行为选择提供更多的参考依据,去服务于人们的行为方式,甚至影响人们的生活方式.我们的scr ...

  3. access登录窗口校验代码一

    Private Sub login_Click()If IsNull(Me.username) ThenMsgBox "请输入用户名!", vbExclamationElseIf ...

  4. Js 实现自定义事件

    var Event = { on: function (eventName, callback) { if (!this[eventName]) { this[eventName] = []; } t ...

  5. WSL与Windows交互实践

    1. WSL是什么 2. WSL新特性 3. WSL管理配置 4. WSL交互 5. 解决方案  * 5.1 使用别名  * 5.2 多复制一份  * 5.3 重定向  * 5.4 symlink 6 ...

  6. 大数据征信的应用和启示:ZestFinance的基于大数据的信用评估技术

    http://www.d1net.com/bigdata/news/325426.html 2014年11月,本文作者有机会和ZestFinance的创始人和首席执行官梅里尔(Douglas C.Me ...

  7. Java Spring Boot 上传文件和预览文件地址解析

    @RequestMapping(value ="/upload",method = RequestMethod.POST) @Permission(isAjax=false) pu ...

  8. SOFA 源码分析 — 扩展机制

    前言 我们在之前的文章中已经稍微了解过 SOFA 的扩展机制,我们也说过,一个好的框架,必然是易于扩展的.那么 SOFA 具体是怎么实现的呢? 一起来看看. 如何使用? 看官方的 demo: 1.定义 ...

  9. Yii2基本概念之——生命周期(LifeCycle)

    人有生老病死,一年有春夏秋冬四季演替,封建王朝有兴盛.停滞.衰亡的周期律--"其兴也勃焉,其亡也忽焉".换句话说,人,季节,王朝等等这些世间万物都有自己的生命周期.同样地,在软件行 ...

  10. Centos制作本地yum源

    本地YUM源制作 1. YUM相关概念 1.1. 什么是YUM YUM(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shel ...