BZOJ_2238_Mst_树剖+线段树

Description

给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树。(各询问间独立,每次询问不对之后的询问产生影响,即被删掉的边在下一条询问中依然存在)

Input

第一行两个正整数N,M(N<=50000,M<=100000)表示原图的顶点数和边数。
下面M行,每行三个整数X,Y,W描述了图的一条边(X,Y),其边权为W(W<=10000)。保证两点之间至多只有一条边。
接着一行一个正整数Q,表示询问数。(1<=Q<=100000)
下面Q行,每行一个询问,询问中包含一个正整数T,表示把编号为T的边删掉(边从1到M按输入顺序编号)。

Output

Q行,对于每个询问输出对应最小生成树的边权和的值,如果图不连通则输出“Not connected”

Sample Input

4 4
1 2 3
1 3 5
2 3 9
2 4 1
4
1
2
3
4

Sample Output

15
13
9
Not connected


我们先求任意一棵最小生成树。

如果被删除的边(x->y)不在树上,则直接输出最小生成树的边权和即可。

否则我们要找到所有能使x,y两点连通的边中边权最小的那个,把它换上。

在插入每条非树边时用这条边的权值更新树上x->y路径上权值的最小值,同时记录边权最小的边的编号。

然后这个可以用树剖+线段树维护出来。

注意如果图不联通要输出Not connected,

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define ls p<<1
#define rs p<<1|1
#define N 100050
int head[N],to[N<<1],nxt[N<<1],cnt,n,m;
int mn[N<<2],f[N],sum,ref[N],val[N<<1];
int dep[N],fa[N],top[N],siz[N],son[N],idx[N],tot;
struct A {
int x,y,z,flg,id;
}a[N];
bool cmp1(const A &x,const A &y) {return x.z<y.z;}
bool cmp2(const A &x,const A &y) {return x.id<y.id;}
int find(int x) {
return f[x]==x?x:f[x]=find(f[x]);
}
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
void dfs1(int x,int y) {
int i;
dep[x]=dep[y]+1; fa[x]=y; siz[x]=1;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
ref[val[i]]=to[i];
dfs1(to[i],x); siz[x]+=siz[to[i]];
if(siz[to[i]]>siz[son[x]]) son[x]=to[i];
}
}
}
void dfs2(int x,int t) {
top[x]=t;idx[x]=++tot;
if(son[x]) dfs2(son[x],t);
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=fa[x]&&to[i]!=son[x]) {
dfs2(to[i],to[i]);
}
}
}
void update(int l,int r,int x,int y,int v,int p) {
if(x<=l&&y>=r) {
mn[p]=min(mn[p],v); return ;
}
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,y,v,ls);
if(y>mid) update(mid+1,r,x,y,v,rs);
}
int query(int l,int r,int x,int p) {
if(l==r) return mn[p];
int mid=(l+r)>>1;
if(x<=mid) return min(mn[p],query(l,mid,x,ls));
else return min(mn[p],query(mid+1,r,x,rs));
}
int main() {
scanf("%d%d",&n,&m);
int i,ne=0,x,y;
for(i=1;i<=n;i++) f[i]=i;
for(i=1;i<=m;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z),a[i].id=i;
sort(a+1,a+m+1,cmp1);
for(i=1;i<=m;i++) {
int dx=find(a[i].x),dy=find(a[i].y);
if(dx!=dy) {
add(a[i].x,a[i].y,a[i].id);
add(a[i].y,a[i].x,a[i].id);
ne++;
f[dx]=dy;
a[i].flg=1;
sum+=a[i].z;
if(ne==n-1) break;
}
}
int q;
if(ne<n-1) {
scanf("%d",&q);
while(q--) {
puts("Not connected");
}
return 0;
}
dfs1(1,0); dfs2(1,1);
for(i=1;i<=4*n;i++) mn[i]=1<<30;
sort(a+1,a+m+1,cmp2);
for(i=1;i<=m;i++) {
if(!a[i].flg) {
x=a[i].x,y=a[i].y;
while(top[x]!=top[y]) {
if(dep[top[x]]>dep[top[y]]) swap(x,y);
update(1,n,idx[top[y]],idx[y],a[i].z,1);
y=fa[top[y]];
}
if(dep[x]<dep[y]) swap(x,y);
if(x!=y)update(1,n,idx[y]+1,idx[x],a[i].z,1);
}
}
int k;
scanf("%d",&q);
while(q--) {
scanf("%d",&k);
if(!a[k].flg) {
printf("%d\n",sum);
}else {
x=a[k].x;y=a[k].y;
int re=query(1,n,idx[ref[k]],1);
if(re==(1<<30)) {
puts("Not connected");
}else {
printf("%d\n",sum-a[k].z+re);
}
}
}
}

BZOJ_2238_Mst_树剖+线段树的更多相关文章

  1. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  2. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  3. 【BZOJ5210】最大连通子块和 树剖线段树+动态DP

    [BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块 ...

  4. [LNOI2014]LCA(树剖+线段树)

    \(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...

  5. [CF1007D]Ants[2-SAT+树剖+线段树优化建图]

    题意 我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径. 给定一棵由 \(n\) 个结点构成的树.你需要用 \(m\) 种不同的颜色为这棵树的树边染色, ...

  6. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  7. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

  8. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  9. POJ3237 Tree(树剖+线段树+lazy标记)

    You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbe ...

随机推荐

  1. Oracle的网络监听配置

    listener.ora.tnsnames.ora和sqlnet.ora这3个文件是关系oracle网络配置的3个主要文件,都是放在$ORACLE_HOME\network\admin目录下.其中li ...

  2. 接口文档神器之apidoc

    //@desn:apidoc linux环境  windows环境使用 //@desn:码字不宜,转载请注明出处 //@author:张慧源  <turing_zhy@163.com> / ...

  3. Oracle12c中性能优化&amp;功能增强新特性之临时undo

    临时表最有意思的特点之一是undo段也存储在常规undo表空间中,而它们的undo反过来被redo保护,这会导致一些问题. 1)  写undo表空间需要数据库以读写模式打开,因此,只读数据库和物理备库 ...

  4. VS 和 VAssistX 常用快捷键

    ----------------------------------------------------------------函数跳转-------------------------------- ...

  5. Future与Promise

    https://code.csdn.NET/DOC_Scala/chinese_scala_offical_document/file/Futures-and-Promises-cn.md#ancho ...

  6. oracle 登录数据库时报 无监听 的一种解决方式(监听日志文件达到4g默认上限)

    问题:登录服务器时 报无监听服务 检查步骤: 1.进入sqlplus查看数据库的状态,显示当前数据库的状态为OPEN 脚本:select status from v$Instance; 2.检查数据库 ...

  7. quick-cocos2d-x与 cocos2d-x的关系

    quick-cocos2d-x(后文简称 quick)与 cocos2d-x 的关系,用一句话概括:quick 是 cocos2d-x 针对 Lua 的豪华套装威力加强版. 那 quick 与 coc ...

  8. SQL之left join,inner join,right join

    left join(左联接) 返回包括左表中的所有记录和右表中联结字段相等的记录 right join(右联接) 返回包括右表中的所有记录和左表中联结字段相等的记录inner join(等值连接) 只 ...

  9. 怎么确定Oracle客户端安装成功

    可通过能否登录sqlplus来判断是否安装成功. 操作系统:windows10 oracle版本:oracle 11g 步骤: 1.电脑win键+R键,输入cmd,进入命令提示符. 2.命令行中输入: ...

  10. MySQL性能调优——锁定机制与锁优化分析

    针对多线程的并发访问,任何一个数据库都有其锁定机制,它的优劣直接关系着数据的一致完整性与数据库系统的高并发处理性能.锁定机制也因此成了各种数据库的核心技术之一.不同数据库存储引擎的锁定机制是不同的,本 ...