网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长。若希望详细了解,建议阅读原文。

本文是使用 tracking by detection 方法进行多目标跟踪的文章,是后续deep sort的基础(Deep SORT见后一篇随笔)。

论文地址:http://arxiv.org/pdf/1602.00763.pdf

代码地址:https://github.com/abewley/sort

文章概述

本方法最大的特点是高效地实现了基于Faster-RCNN的detection并使用Kalman滤波以及 Hungarian算法进行跟踪。提高了speed同时达到了comparable state-of-the-art的accuracy。

文章观点

  • 以Re-id的形式整合复杂性会增加跟踪框架的巨大开销,会限制其在实时程序中的使用;
  • 以往方法使用delay making difficult decisions的方法来处理不确定性较高的匹配,这使得组合复杂度很大,难以进行实时识别;
  • 以往进行两部工作来用相邻图片的几何和外观关联轨迹的方法需要使用batch,难以进行on-line tracking。

文章方法

将tracking对象状态传播到未来的帧中(主要使用卡尔曼滤波以及线性速度的假设),将当前的检测与现有的对象相关联,并管理被跟踪对象的age。

1. 目标检测

使用Faster-RCNN进行detection,文章通过对比来说明detection的质量对后续的tracking至关重要。

2. 估计模型

  • 当检测与目标相关联时,检测到的边界框用于更新目标状态,其中速度分量通过卡尔曼滤波框架最优地求解;
  • 如果target没有跟detection相连,就用线性速度模型对taeget进行预测;(这种预测错误率较高)

3. 数据组合

  • 在将detection分配给现有track时,通过预测其在当前帧中的新位置来估计每个目标
  • 使用每个detection和所有预测的bonding box的IOU距离来计算assignment cost matrix;
  • 小于IOU阈值的assignment 会被拒绝,源码中阈值设置为0.3;
  • 文章指出使用IOU distance 可以解决 tracking 中的短暂遮挡问题,这是由于IOU distance更倾向于检测相似尺寸(个人理解是因为IOU distance的计算使用了detection 和 prediction 的共同区域,而如果相邻帧产生轻微遮挡,共同区域的变化不大,从而保证了短暂遮挡的有效track,当然如果完全遮挡那么assignment肯定会出错),但是如果遮挡时间较长会重新分配track,造成出错。(较长时间的遮挡问题在后续的deep sort论文中使用appearance特征进行缓解)。

 4. Track的建立和删除

  • 如果detection和target的重叠率小于IOU阈值,认为此track应当删除;(个人认为这种完全基于几何预测bonding box 的位置来判断会造成比较大的错误率以及 ID switch,当然后续的deep sort 也对这方面进行了改进。)
  • 如果在Tlost 帧内没有对应的 detection 与 track 匹配,就将此track删除。文中Tlost 设为1,文中指出是因为没有匹配所使用的固定速度模型效果很差并且帧数过多的re-id问题超出了本文讨论的范围。(个人认为主要还是固定速度的预测模型的问题)。

文章结果

文章结果还是挺不错的,MOTA也接近state-of-the-art,速度方面在 i7 2.5GHz的机器上可以达到260Hz的速度,能够满足实时性的要求。但是由于预测模型和IOU distance的限制导致 ID switch相对于其他方法高了许多。

多目标跟踪(MOT)论文随笔-SIMPLE ONLINE AND REALTIME TRACKING (SORT)的更多相关文章

  1. 多目标跟踪(MOT)论文随笔-SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC (Deep SORT)

    网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长.若希望详细了解,建议阅读原文. 本文是tracking by detection 方法进行多目标跟踪的文章,在SORT的基础 ...

  2. 多目标跟踪(MOT)论文随笔-POI: Multiple Object Tracking with High Performance Detection and Appearance Feature

    网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长.若希望详细了解,建议阅读原文. 本文是tracking by detection 方法进行多目标跟踪的文章,最大的特点是使用 ...

  3. 多目标跟踪MOT综述

    https://blog.csdn.net/u012435142/article/details/85255005 多目标跟踪MOT 1评价指标 https://www.cnblogs.com/YiX ...

  4. 多目标跟踪(MOT)评测标准

    MOT16是多目标跟踪领域非常有名的评测数据集,Ref 1详细阐述了这个数据集的组成以及评测标准(及其评测代码),Ref 2详细地解释了许多标准的由来和考虑,本部分主要介绍MOT任务中常用的评测标准. ...

  5. [论文理解] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

    Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的t ...

  6. 论文翻译:2021_A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network

    论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression ...

  7. 论文笔记:AdaScale: Towards real-time video object detection using adaptive scalingAdaScale

    AdaScale: Towards real-time video object detection using adaptive scaling 2019-02-18 16:14:17 Paper: ...

  8. 多目标跟踪MOT评价指标

    目录 1. MOT评价指标 2. 实现思路 3. 计算指标 1. MOT评价指标 MOT:multiple object tracking 评价出发点: 所有出现的目标都要及时能够找到: 目标位置要尽 ...

  9. PMVS论文随笔(1)

    博客园排版系统真的比较挫,可以访问我的github.io阅读 关于Unit的概念 在pmvs的源代码中,有一个函数是getUnit ,其函数如下(在PMVS2的windows版本代码,optim.cc ...

随机推荐

  1. WPF自学入门(一)WPF-XAML基本知识

    一.基本概念 1.XAML是派生自XML的可扩展应用程序标记语言(Extensible Application Markup Language)由微软创造应用在WPF,Silverlight等开发技术 ...

  2. Struts2(四)Struts2配置文件的配置

    Struts2的常见配置 1.Struts2的配置文件的加载顺序: 每次从客户端发送到请求到服务器都要先从Struts2的核心过滤器StrutsPrepareAndExeccuteFilter,这个过 ...

  3. 使用promise方式写settimeout

    //使用promise方式写settimeout, //好处就是用于写动画的时候只需知道后一个的动画在前一个动画结束后多久执行 console.time('settimeout:');//开始计算这段 ...

  4. 书籍--嵌入式Linux驱动开发

    <UNIX环境高级编程>(第2版),史蒂文斯著 <深入理解 Linux 内核>(第三版) ,博韦等著 Linux设备驱动开发详解:基于最新的Linux 4.0内核    宋宝华

  5. controller层中,参数的获取方式以及作用域的问题

    package com.krry.web; import javax.servlet.http.HttpServletRequest; import org.springframework.stere ...

  6. R语言-来自拍拍贷的数据探索

    案例分析:拍拍贷是中国的一家在线借贷平台,网站撮合了一些有闲钱的人和一些急用钱的人.用户若有贷款需求,可在网站上选择借款金额. 本项目拟通过该数据集的探索,结合自己的理解进行分析,最终目的的是初步预测 ...

  7. [USACO13NOV]没有找零No Change [TPLY]

    [USACO13NOV]没有找零No Change 题目链接 https://www.luogu.org/problemnew/show/3092 做题背景 FJ不是一个合格的消费者,不知法懂法用法, ...

  8. 【LightOJ1282】Leading and Trailing(数论)

    [LightOJ1282]Leading and Trailing(数论) 题面 Vjudge 给定两个数n,k 求n^k的前三位和最后三位 题解 这题..真的就是搞笑的 第二问,直接输出快速幂\(m ...

  9. [SCOI2005]王室联邦

    分块基本没有限制 所以每次大于等于b就分一块 # include <bits/stdc++.h> # define RG register # define IL inline # def ...

  10. xctf的一道题目(77777)

    这次比赛我没有参加,这是结束之后才做的题目 题目链接http://47.97.168.223:23333 根据题目信息,我们要update那个points值,那就是有很大可能这道题目是一个sql注入的 ...