1、中心扩展

中心扩展就是把给定的字符串的每一个字母当做中心,向两边扩展,这样来找最长的子回文串。算法复杂度为O(N^2)

但是要考虑两种情况:

1、像aba,这样长度为奇数。

2、想abba,这样长度为偶数。
代码如下:
string findLongestPalindrome(string &s)
{
const int length=s.size();
int maxlength=;
int start; for(int i=;i<length;i++)//长度为奇数
{
int j=i-,k=i+;
while(j>=&&k<length&&s.at(j)==s.at(k))
{
if(k-j+>maxlength)
{
maxlength=k-j+;
start=j;
}
j--;
k++;
}
} for(int i=;i<length;i++)//长度为偶数
{
int j=i,k=i+;
while(j>=&&k<length&&s.at(j)==s.at(k))
{
if(k-j+>maxlength)
{
maxlength=k-j+;
start=j;
}
j--;
k++;
}
}
if(maxlength>)
return s.substr(start,maxlength);
return NULL;
}
 
 
 
2、动态规划
 
有母串s,我们用c[i, j] = 1表示子串s[i..j]为回文子串,空间和算法复杂度也是O(N^2)。那么就有递推式:
c[i,j]={ c[i+,j−],   if s[i]=s[j]
, if s[i]≠s[j]

递推式表示在s[i] = s[j]情况下,如果s[i+1..j-1]是回文子串,则s[i..j]也是回文子串;如果s[i+1..j-1]不是回文子串,则s[i..j]也不是回文子串。

初始状态:

    c[i][i] =
c[i][i+] = if s[i] == s[i+]

上述式子表示单个字符、两个字符均是回文串[j]

int longestPald(char *str) {
int len = strlen(str);
int c[maxLen][maxLen];
int i,j;
int longest = ; assert(str != NULL);
if(len == ) {
return ;
}
//initialization
for(i = ; i < len; i++) {
c[i][i] = ;
if(str[i] == str[i+])
  c[i][i+] = ;
} for(i = ; i < len; i++) {
for(j = i+; j <= len; j++) {
if(str[i] == str[j]) {
c[i][j] = c[i+][j-];
//find longest palindrome substring
if(c[i][j]) {
int n = j - i + ;
if(longest < n)
longest = n;
}
} else {
c[i][j] = ;
}
}
}
return longest;
}

3、暴力法

最容易想到的就是暴力破解,求出每一个子串,之后判断是不是回文,找到最长的那个。

求每一个子串时间复杂度O(N^2),判断子串是不是回文O(N),两者是相乘关系,所以时间复杂度为O(N^3)。

string findLongestPalindrome(string &s)
{
int length=s.size();//字符串长度
int maxlength=;//最长回文字符串长度
int start;//最长回文字符串起始地址
for(int i=;i<length;i++)//起始地址
for(int j=i+;j<length;j++)//结束地址
{
int tmp1,tmp2;
for(tmp1=i,tmp2=j;tmp1<tmp2;tmp1++,tmp2--)//判断是不是回文
{
if(s.at(tmp1)!=s.at(tmp2))
break;
}
if(tmp1>=tmp2&&j-i>maxlength)
{
maxlength=j-i+;
start=i;
}
}
if(maxlength>)
return s.substr(start,maxlength);//求子串
return NULL;
}

4、Manacher法(待续)

Algorithm --> 最长回文子串的更多相关文章

  1. Manacher's algorithm: 最长回文子串算法

    Manacher 算法是时间.空间复杂度都为 O(n) 的解决 Longest palindromic substring(最长回文子串)的算法.回文串是中心对称的串,比如 'abcba'.'abcc ...

  2. 【转】最长回文子串的O(n)的Manacher算法

    Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...

  3. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  4. 后缀数组 - 求最长回文子串 + 模板题 --- ural 1297

    1297. Palindrome Time Limit: 1.0 secondMemory Limit: 16 MB The “U.S. Robots” HQ has just received a ...

  5. 最长回文子串(Manacher算法)

    回文字符串,想必大家不会不熟悉吧? 回文串会求的吧?暴力一遍O(n^2)很简单,但当字符长度很长时便会TLE,简单,hash+二分搞定,其复杂度约为O(nlogn), 而Manacher算法能够在线性 ...

  6. 【回文字符串】 最长回文子串O(N) Manacher算法

    原理讲的清晰:Manacher's ALGORITHM: O(n)时间求字符串的最长回文子串 注意: ①动态生命P[]和newStr数组后,不要忘记delete[] //其实这是基本的编码习惯 ②最终 ...

  7. URAL 1297 Palindrome 最长回文子串

    POJ上的,ZOJ上的OJ的最长回文子串数据量太大,用后缀数组的方法非常吃力,所以只能挑个数据量小点的试下,真要做可能还是得用manacher.贴一下代码 两个小错,一个是没弄懂string类的sub ...

  8. 51nod1089最长回文子串V2

    1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 回文串是指aba.abba.cccbccc.aaaa这种左右对称的字 ...

  9. Palindrome - POJ 3974 (最长回文子串,Manacher模板)

    题意:就是求一个串的最长回文子串....输出长度. 直接上代码吧,没什么好分析的了.   代码如下: ================================================= ...

随机推荐

  1. 如何在WDM中使用xp系统的DMA用来处理数据

    最近做了一款pci的视频采集卡(H264压缩),由于数据传输量比较大,所有想采用dma来传输数据,刚开始感觉很简单,后来感觉还是困难重重. DMA 验证监控直接内存访问 (DMA) 的使用.随着 Wi ...

  2. 把mmapv1存储引擎存储的mongodb3.0数据库数据复制到WiredTiger存储引擎的mongodb3.2中

    mongodb3.0在mmapv1的存储引擎基础上添加了一个新的存储引擎WiredTiger.但是3.0的默认存储引擎依旧是mmapv1,因此我们项目之前也就用的默认方式. 但是mongodb更新实在 ...

  3. WebService之CXF注解之一(封装类)

    Teacher.java: /** * @Title:Teacher.java * @Package:com.you.model * @Description:老师封装类 * @author:Youh ...

  4. Caused by: java.sql.SQLException: Field 'id' doesn't have a default value

    1.错误描述 org.hibernate.exception.GenericJDBCException: error executing work at org.hibernate.exception ...

  5. Django学习-5-模板渲染

    1. {{ 变量名 }}                          def func(request):                     return render(request, ...

  6. 关于ios手机游览器针对overflow:hidden设置无效的解决办法

    Ordinarily, overflow: hidden; on the body tag is sufficient to prevent scrolling a web page, if for ...

  7. js弹窗登录效果(源码)--web前端

    1.JS弹窗登录效果 <!DOCTYPE html><html lang="en"><head> <meta charset=" ...

  8. 【BZOJ2555】SubString(后缀自动机,Link-Cut Tree)

    [BZOJ2555]SubString(后缀自动机,Link-Cut Tree) 题面 BZOJ 题解 这题看起来不难 每次要求的就是\(right/endpos\)集合的大小 所以搞一个\(LCT\ ...

  9. 【CJOJ P2226】[省常中2011S4] 圣诞节

    Description 圣诞节到了,FireDancer准备做一棵大圣诞树.下图为圣诞树的一个简单结构. 这棵树被表示成一组被编号的结点和一些边的集合.结点从1到n编号.树的根永远是1.每个结点都有一 ...

  10. P2500 - 【DP合集】背包 bound

    题面 Description N 种物品,第 i 种物品有 s i 个,单个重量为 w i ,单个价值为 v i .现有一个限重为 W 的背包,求能容 纳的物品的最大总价值. Input 输入第一行二 ...