前言

  查询处理及优化是关系数据库得以流行的根本原因,也是关系数据库系统最核心的技术之一。SQLite的查询处理模块很精致,而且很容易移植到不支持SQL的存储引擎(Berkeley DB最新的版本已经将其完整的移植过来)。
  查询处理一般来说,包括词法分析、语法分析、语义分析、生成执行计划以及执行计划几个部分。SQLite的词法分析器是手工写的(比较简单),语法分析器由Lemon生成,语义分析主要是进行语义方面的一些检查,比如table是否存在等。而执行计划的生成及执行是最核心的两部分,也是相对比较复杂、有点技术含量的部分。SQLite的执行计划采用了虚拟机的思想,实际上,这种基于虚拟机的思想并非SQLite所独有,但是,SQLite将其发挥到了极致,它生成的执行计划非常详细,而且易读(不得不佩服D. Richard Hipp在编译理论方面的功底)。

1、语法分析——语法树

  语法分析的主要任务是对用户输入的SQL语句进行语法检查,然后生成一个包含所有信息的语法树。对于SELECT语句,这个语法树最终由结构体Select表示:

struct Select {
  ExprList *pEList;      /* The fields of the result 结果的字段 */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  char affinity;         /* MakeRecord with this affinity for SRT_Set */
  u16 selFlags;          /* Various SF_* values */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement 在一个复合选择语句中的优先选择 */
  Select *pNext;         /* Next select to the left in a compound */
  Select *pRightmost;    /* Right-most select in a compound select statement 在一个复合选择语句中的最右边的选择*/
  Expr *pLimit;          /* LIMIT expression. NULL means not used. */
  Expr *pOffset;         /* OFFSET expression. NULL means not used. */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  ];   /* OP_OpenEphem opcodes related to this select */
};

  该结构体中,pEList是结果列的语法树;pSrc为FROM子句的语法树;pWhere为WHERE部分的语法树。

  select语法分析最终在sqlite3SelectNew中完成:

Select *sqlite3SelectNew(
  Parse *pParse,        /* Parsing context 解析上下文 */
  ExprList *pEList,     /* which columns to include in the result 在结果中包含哪些列 */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  int isDistinct,       /* true if the DISTINCT keyword is present */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  assert( db->mallocFailed || !pOffset || pLimit ); /* OFFSET implies LIMIT */
   ){
    pNew = &standin;
    memset(pNew, , sizeof(*pNew));
  }
   ){
    pEList = sqlite3ExprListAppend(pParse, , sqlite3Expr(db,TK_ALL,));
  }
  pNew->pEList = pEList;
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->selFlags = isDistinct ? SF_Distinct : ;
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset== || pLimit!= );
  pNew->addrOpenEphm[] = -;
  pNew->addrOpenEphm[] = -;
  pNew->addrOpenEphm[] = -;
  if( db->mallocFailed ) {
    clearSelect(db, pNew);
    if( pNew!=&standin ) sqlite3DbFree(db, pNew);
    pNew = ;
  }
  return pNew;
}

  以上函数主要是将之前得到的各个子语法树汇总到Select结构体,并根据该结构,进行语义分析及执行计划的生成等工作。

  示例(贯穿全文)

explain select s.sname,c.cname,sc.grade from students s join sc join course c on s.sid=sc.sid and sc.cid = c.cid;
|Trace||||||
|Goto||||||
//////////////////////////(1)////////////////////////////
|OpenRead||||||students  #打开students表
|OpenRead||||||sc      #打开sc表
|OpenRead||||keyinfo(,BINARY,BINARY)||sqlite_autoindex_sc_1 #sc的索引
|OpenRead||||||course    #打开course表
|OpenRead||||keyinfo(,BINARY)||sqlite_autoindex_course_1    #course的索引
//////////////////////////(2)//////////////////////////////
|Rewind||||||         #将游标p0定位到students表的第一条记录
|Column||||||students.sid  #取出第0列,写到r1
|IsNull||||||
|Affinity||||d||
|SeekGe||||||        #将游标p3定位到sc索引>=r1的记录处
|IdxGE||||||
|IdxRowid||||||
|Seek||||||
|Column||||||sc.cid      #读取sc.cid到r3
|IsNull||||||
|Affinity||||d||
|SeekGe||||||        #将游标p4定位到course索引>=r3的记录处
|IdxGE||||||
|IdxRowid||||||
|Seek||||||
///////////////////////////(3)//////////////////////////////
|Column||||||students.sname #从游标p0取出第1列 (sname)
|Column||||||course.cname  #从游标p2取出第1列 (cname)
|Column||||||sc.grade     #从游标p1取出第2列 (grade)
|ResultRow||||||
///////////////////////////(4)///////////////////////////////
|Next||||||
|Next||||||
|Next||||||
|Close||||||
|Close||||||
|Close||||||
|Close||||||
|Close||||||
//////////////////////////(5)//////////////////////////////////
|Halt||||||
|Transaction||||||
|VerifyCookie||||||
|TableLock||||students||
|TableLock||||sc||
|TableLock||||course||
|Goto||||||

  该SQL语句生成的语法树如下:

FROM部分:

第一个表项:

表名zName =”stduents”,zAlias=”s”,jointype = 0

第二个表项:

jointype = 1(JT_INNER)

第三个表项:

jointype = 1(JT_INNER)

WHERE部分(结点类型为Expr的一棵二叉树)

2、生成执行计划(语法树到OPCODE)

  Select的执行计划在sqlite3Select中完成:

int sqlite3Select(
  Parse *pParse,         /* The parser context */
  Select *p,             /* SELECT语法树 */
  SelectDest *pDest      /* 如何处理结果集 */
)

  该函数先对SQL语句进行语义分析,再进行优化,最后生成执行计划。

  对于上面的SQL语句,生成的执行计划(虚拟机opcode)大致分成5部分,前4部分都在sqlite3Select()中生成,它主要调用了以下几个函数:

  其中(1)、(2)在sqlite3WhereBegin()中生成,(2)即所谓的查询优化处理;(3)在 selectInnerLoop中生成;(4)在sqlite3WhereEnd中生成;(5)在sqlite3FinishCoding中完成。 

 1)sqlite3WhereBegin

  该函数是查询处理最为核心的函数,它主要完成where部分的优化及相关opcode的生成。

WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned 要扫描的所有表的列表*/
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
  u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
)

  pTabList是由分析器对FROM部分生成的语法树,它包含FROM语句中的表的信息;pWhere是WHERE部分的语法树,它包含WHERE中所有表达式的信息;ppOrderBy对应ORDER BY子句。

  SQLite的查询优化简单而精致,在sqlite3WhereBegin函数中,即可完成所有的优化处理。查询优化的基本理念就是嵌套循环(nested loop),SELECT语句的FROM子句的每个表对应一层循环(INSERT和UPDATE语句对应只有一个表)。例如:

SELECT * FROM t1, t2, t3 WHERE ...;

  进行如下操作:

foreach row1 in t1 do       \    Code generated
  foreach row2 in t2 do      |-- by sqlite3WhereBegin()
    foreach row3 in t3 do   /
      ...
    end                     \    Code generated
  end                        |-- by sqlite3WhereEnd()
end                         /

  而对于每一层的优化,基本的理念就是分析WHERE子句中是否有表达式能够使用该层循环的表的索引。

  SQLite有三种基本的扫描策略:

   ① 全表扫描,这种情况通常出现在没有WHERE子句时;

   ② 基于索引扫描,这种情况通常出现在表有索引,而且WHERE中的表达式又能够使用该索引的情况;

   ③ 基本rowid的扫描,这种情况通常出现在WHERE表达式中含有rowid的条件。(该情况实际上也是对表进行扫描,SQLite以rowid为聚簇索引)

  第一种情况比较简单,第三种情况与第二种情况没有本质的差别。下面就第二种情况进行详细讨论。

  以下为sqlite3WhereBegin的关键代码:

/*分析where子句的所有表达式**如果表达式的形式为X <op> Y,则增加一个Y <op> X形式的虚Term,并在后面进行单独分析*/
exprAnalyzeAll(pTabList, pWC);
WHERETRACE(("*** Optimizer Start ***\n"));
//优化开始
, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far 迄今为止最有效的计划 */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables 从表循环*/
    ;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search 优化/非优化搜索的迭代器 */

    memset(&bestPlan, , sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;

    /*进行两次扫描:*/
  //如果第一次扫描没有找到优化的扫描策略,此时,isOptimal==0,bestJ==-1,则进行第二次扫描
    ; isOptimal>= && bestJ<; isOptimal--){
    //第一次扫描的mask==0,表示所有表都已经准备好
      Bitmask mask = (isOptimal ?  : notReady);
      assert( (nTabList-iFrom)> || isOptimal );

      for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
        int doNotReorder;    /* True if this table should not be reordered 如果该表不应该被重新排序为True */
        WhereCost sCost;     /* Cost information from best[Virtual]Index() */
        ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */

     //对于左连接和交叉连接,不能改变嵌套的顺序
        doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=;

        if( j!=iFrom && doNotReorder ) //如果j==iFrom,仍要进行优化处理(此时,是第一次处理iFrom项)
            break;
        m = getMask(pMaskSet, pTabItem->iCursor);
         ){//如果该pTabItem已经进行处理,则不需要再处理
          if( j==iFrom )
              iFrom++;
          continue;
        }
        pOrderBy = ((i== && ppOrderBy )?*ppOrderBy:);

        {
          //对一个表(pTabItem),找到它的可用于本次查询的最好的索引,sCost返回对应的代价
          bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
        }

         && (j==iFrom || sCost.rCost<bestPlan.rCost)
        ){
          bestPlan = sCost;
          bestJ = j; //如果bestJ>=0,表示找到了优化的扫描策略
        }
        if( doNotReorder ) break;
      }//end for
    }//end for
    WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
           pLevel-pWInfo->a));

     ){//不需要进行排序操作
      *ppOrderBy = ;
    }
  //设置该层选用的查询策略
  andFlags &= bestPlan.plan.wsFlags;
  pLevel->plan = bestPlan.plan;

  //如果可以使用索引,则设置索引对应的游标的下标
  if( bestPlan.plan.wsFlags & WHERE_INDEXED ){
      pLevel->iIdxCur = pParse->nTab++;
  }else{
      pLevel->iIdxCur = -;
  }
  notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
  //该层对应的FROM的表项,即该层循环是对哪个表进行的操作
  pLevel->iFrom = (u8)bestJ;

}
//优化结束
WHERETRACE(("*** Optimizer Finished ***\n"));

  优化部分的代码的基本算法如下:

foreach  level  in all_levels
bestPlan.rCost = SQLITE_BIG_DBL
foreach table in tables that not handled
{
    //计算where中表达式能使用其索引的策略及代价rCost
    If(sCost.rCost < bestPlan.rCost)
      bestPlan = sCost
}
level.plan = bestPlan

  该算法本质上是一个贪婪算法(greedy algorithm)。其中,bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost)是pParse对应的表针对where子句的表达式分析查询策略的核心函数。

  对于之前的示例,经过以上优化处理后,得到的查询策略分3层循环,最外层是students表,全表扫描;中间层是sc表,利用索引sqlite_autoindex_sc_1,即sc的key对应的索引;内层是course表,利用索引sqlite_autoindex_course_1。

  之后,开始生成(1)、(2)两部分opcode。

  其中(1)的opcode由以下代码生成:

//生成打开表的指令

  && (wctrlFlags & WHERE_OMIT_OPEN)== ){
  //pTabItem->iCursor为表对应的游标下标
  int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
  sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
}

//生成打开索引的指令
 ){
  Index *pIx = pLevel->plan.u.pIdx;
  KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
  int iIdxCur = pLevel->iIdxCur; //索引对应的游标下标
  sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,(char*)pKey, P4_KEYINFO_HANDOFF);  VdbeComment((v, "%s", pIx->zName)); }

  而(2)的opcode由以下代码生成:

 notReady = ~(Bitmask);
  ; i<nTabList; i++){
    //核心代码,从最外层向最内层,为每一层循环生成opcode
    notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
    pWInfo->iContinue = pWInfo->a[i].addrCont;
  }

  其中codeOneLoopStart(pWInfo, i, wctrlFlags, notReady)函数,根据优化分析得到的结果生成每层循环的opcode:

static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
  int iLevel,          /* Which level of pWInfo->a[] should be coded */
  u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
  Bitmask notReady     /* Which tables are currently available */
)

  codeOneLoopStart针对5种不同的查询策略,生成各自不同的opcode:

if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){  //rowid的等值查询
...
}else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){  //rowid的范围查询
...
}else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){  //使用索引的等值/范围查询
...
}if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){  //or
...
}else{  //全表扫描
...
}

  其中,全表扫描如下

static const u8 aStep[] = { OP_Next, OP_Prev };
static const u8 aStart[] = { OP_Rewind, OP_Last };
pLevel->op = aStep[bRev];
pLevel->p1 = iCur;
pLevel->p2 =  + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); //生成OP_Rewind/OP_Last指令
pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;

  示例中最外层循环students是全表扫描,生成指令7。

  其中,利用索引的等值/范围查询:

  对于示例:中间循环sc表,用到索引,指令8~14是对应的opcode。
       内层循环course表,也用到索引,指令15~21是对应的opcode。

  在通用数据库中,连接操作会生成所谓的结果集(用临时表存储)。而SQLite不会生成中间结果集,例如示例中,会分别对students、sc和course表各分配一个游标,每次调用接口sqlite3_step时,游标根据where条件分别定位到各自的记录,然后取出查询输出列的数据,放到用于存放结果的寄存器中(如示例(3)中的opcode)。所以在SQLite中,必须不断调用sqlite3_step才能读取所有记录。

 2)selectInnerLoop

  该函数主要生成输出结果列的opcode,即示例(3)中的opcode。

 3)sqlite3WhereEnd

  该函数主要完成嵌套循环的收尾工作的opcode的生成,为每层循环生成OP_Next/OP_Prev,以及关闭表和索引游标的OP_Close。

3、SQLite的代价模型

  再看bestBtreeIndex函数,其完成查询代价的计算以及查询策略的确定。

  SQLite采用基于代价的优化。根据处理查询时CPU和磁盘I/O的代价,主要考虑以下一些因素:
   A、查询读取的记录数;
   B、结果是否排序(这可能会导致使用临时表);
   C、是否需要访问索引和原表。

static void bestBtreeIndex(
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors that are not available */
  ExprList *pOrderBy,         /* The ORDER BY clause */
  WhereCost *pCost            /* Lowest cost query plan */
)

  该函数的主要工作就是输出pCost,它包含查询策略信息及相应的代价。

  其核心算法如下

//遍历其所有索引,找到一个代价最小的索引
for(; pProbe; pIdx=pProbe=pProbe->pNext){
    const unsigned int * const aiRowEst = pProbe->aiRowEst;
    double cost;                /* Cost of using pProbe */
    double nRow;                /* Estimated number of rows in result set */
    int rev;                    /* True to scan in reverse order */
    ;
    Bitmask used = ;   //该表达式使用的表的位码

    int nEq;           //可以使用索引的等值表达式的个数
    ;     //如果存在 x IN (SELECT...),则设为true
    ;     //处理IN子句
    ;   //估计需要扫描的表中的元素,100表示需要扫描整个表,范围条件意味着只需要扫描表的某一部分
    ;      //是否需要排序
    ;    //如果对索引中的每个列,需要对应的表进行查询,则为true

    /* Determine the values of nEq and nInMul */
    //计算nEq和nInMul值
    ; nEq<pProbe->nColumn; nEq++){
      WhereTerm *pTerm; /* A single term of the WHERE clause */
      int j = pProbe->aiColumn[nEq];
      pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
       ) //如果该条件在索引中找不到,则break
          break;
      wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
      if( pTerm->eOperator & WO_IN ){
        Expr *pExpr = pTerm->pExpr;
        wsFlags |= WHERE_COLUMN_IN;
        if( ExprHasProperty(pExpr, EP_xIsSelect) ){ //IN (SELECT...)
          nInMul *= ;
          bInEst = ;
        }else if( pExpr->x.pList ){
          nInMul *= pExpr->x.pList->nExpr + ;
        }
      }else if( pTerm->eOperator & WO_ISNULL ){
        wsFlags |= WHERE_COLUMN_NULL;
      }
      used |= pTerm->prereqRight; //设置该表达式使用的表的位码
    }

    //计算nBound值
    if( nEq<pProbe->nColumn ){//考虑不能使用索引的列
      int j = pProbe->aiColumn[nEq];
      if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
        WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);//>=

        //估计范围条件的代价
        whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &nBound);
        if( pTop ){
          wsFlags |= WHERE_TOP_LIMIT;
          used |= pTop->prereqRight;
        }
        if( pBtm ){
          wsFlags |= WHERE_BTM_LIMIT;
          used |= pBtm->prereqRight;
        }
        wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
      }
    }else if( pProbe->onError!=OE_None ){//所有列都能使用索引
       ){
        wsFlags |= WHERE_UNIQUE;
      }
    }

    if( pOrderBy ){//处理order by

        && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
      ){
        wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
        wsFlags |= (rev ? WHERE_REVERSE : );
      }else{
        bSort = ;
      }
    }

    if( pIdx && wsFlags ){
      Bitmask m = pSrc->colUsed; //m为src使用的列的位图
      int j;
      ; j<pIdx->nColumn; j++){
        int x = pIdx->aiColumn[j];
         ){
          m &= ~(((Bitmask))<<x); //将索引中列对应的位清0
        }
      }
       ){//如果索引包含src中的所有列,则只需要查询索引即可
        wsFlags |= WHERE_IDX_ONLY;
      }else{
        bLookup = ;//需要查询原表
      }
    }

    //估计输出行数,同时考虑IN运算
    nRow = (double)(aiRowEst[nEq] * nInMul);
    >aiRowEst[] ){
      nRow = aiRowEst[]/;
      nInMul = (int)(nRow / aiRowEst[nEq]);
    }

    //代价为输出的行数+二分查找的代价
    cost = nRow + nInMul*estLog(aiRowEst[]);

    //考虑范围条件影响
    nRow = (nRow * (;
    cost = (cost * (;

    //加上排序的代价:cost *log (cost)
    if( bSort ){
      cost += cost*estLog(cost);
    }

    //如果只查询索引,则代价减半
     ){
      cost /= (;
    }

    //如果当前的代价更小
    if( (!pIdx || wsFlags) && cost<pCost->rCost ){
      pCost->rCost = cost; //代价
      pCost->nRow = nRow;  //估计扫描的元组数
      pCost->used = used; //表达式使用的表的位图
      pCost->plan.wsFlags = (wsFlags&wsFlagMask); //查询策略标志(全表扫描,使用索引进行扫描)
      pCost->plan.nEq = nEq; //查询策略使用等值表达式个数
      pCost->plan.u.pIdx = pIdx; //查询策略使用的索引(全表扫描则为NULL)
    }

    //如果SQL语句存在INDEXED BY,则只考虑该索引
    if( pSrc->pIndex ) break;

    /* Reset masks for the next index in the loop */
    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
    eqTermMask = idxEqTermMask;
  }

  SQLite的代价模型比较简单,而通用数据库一般是将基于规则的优化和基于代价的优化结合起来,更为复杂。

SQLite3源程序分析之查询处理及优化的更多相关文章

  1. SQLite3源程序分析之虚拟机

    前言 最早的虚拟机可追溯到IBM的VM/370,到上个世纪90年代,在计算机程序设计语言领域又出现一件革命性的事情——Java语言的出现,它与c++最大的不同在于它必须在Java虚拟机上运行.Java ...

  2. SQLite3源程序分析之分析器的生成

    1.概述 Lemon是一个LALR(1)文法分析器生成工具,与bison和yacc类似,是一个可以独立于SQLite使用的开源的分析器生成工具.而且它使用与yacc(bison)不同的语法规则,可以减 ...

  3. 高性能MySql进化论(十一):常见查询语句的优化

    总结一下常见查询语句的优化方式 1        COUNT 1.       COUNT的作用 ·        COUNT(table.filed)统计的该字段非空值的记录行数 ·         ...

  4. mysql数据库的优化和查询效率的优化

    一.数据库的优化 1.优化索引.SQL 语句.分析慢查询: 2.设计表的时候严格根据数据库的设计范式来设计数据库: 3.使用缓存,把经常访问到的数据而且不需要经常变化的数据放在缓存中,能节约磁盘IO: ...

  5. SQL Server 2016 查询存储性能优化小结

    SQL Server 2016已经发布了有半年多,相信还有很多小伙伴还没有开始使用,今天我们来谈谈SQL Server 2016 查询存储性能优化,希望大家能够喜欢 作为一个DBA,排除SQL Ser ...

  6. 0613pt-query-digest分析慢查询日志

    转自http://www.jb51.net/article/107698.htm 这篇文章主要介绍了关于MySQL慢查询之pt-query-digest分析慢查询日志的相关资料,文中介绍的非常详细,对 ...

  7. 通过force index了解的MySQL查询的性能优化

    查询是数据库技术中最常用的操作.查询操作的过程比较简单,首先从客户端发出查询的SQL语句,数据库服务端在接收到由客户端发来的SQL语句后, 执行这条SQL语句,然后将查询到的结果返回给客户端.虽然过程 ...

  8. Mysql系列(五)—— 分页查询及问题优化

    一.用法 在Mysql中分页查询使用关键字limit.limit的语法如下: SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15 limit关键字带有 ...

  9. 如何提高sql查询性能到达优化程序的目的

    1.关于SQL查询效率,100w数据 SQL查询效率 step by step -- setp 1.-- 建表create table t_userinfo(userid int identity(1 ...

随机推荐

  1. 用python实现最长公共子序列算法(找到所有最长公共子串)

    软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...

  2. line-height不同单位之间的区别

    line-height用来设置元素的行高. 该属性会影响行框的布局.在应用到一个块级元素时,它定义了该元素中基线之间的最小距离而不是最大距离. line-height 与 font-size 的计算值 ...

  3. Apache Hadoop2.x 边安装边入门

    完整PDF版本:<Apache Hadoop2.x边安装边入门> 目录 第一部分:Linux环境安装 第一步.配置Vmware NAT网络 一. Vmware网络模式介绍 二. NAT模式 ...

  4. 我喜欢的Notepad++插件

    Notepad++插件 HEX-Editor 文本转16进制,查看编辑. NppExport 导出已着色代码为其他格式的文件. 将彩色代码,导出为word文档(RFT)或网页(HTML)文件,或者将彩 ...

  5. 【无私分享:ASP.NET CORE 项目实战(第十章)】发布项目到 Linux 上运行 Core 项目

    目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 ASP.Net Core 给我们带来的最大的亮点就是跨平台,我在我电脑(win7)上用虚拟机建了个 CentOS7 ,来演示下 ...

  6. Mac OS X搭建C#开发环境

    在Mac下想要用C#语言的话,首先得有个跨平台的.Net环境-Mono http://www.mono-project.com/ 有了Mono平台之后,还得有一个好工具:目前比较好的IDE是Xmari ...

  7. php注释规范

    注释在写代码的过程中非常重要,好的注释能让你的代码读起来更轻松,在写代码的时候一定要注意注释的规范.(李昌辉) php里面常见的几种注释方式: 1.文件头的注释,介绍文件名,功能以及作者版本号等信息 ...

  8. elasticsearch高级配置二----线程池设置

    一个Elasticsearch节点会有多个线程池,但重要的是下面四个: 索引(index):主要是索引数据和删除数据操作(默认是cached类型) 搜索(search):主要是获取,统计和搜索操作(默 ...

  9. springmvc+spring+mybatis+maven项目集成shiro进行用户权限控制【转】

    项目结构:   1.maven项目的pom中引入shiro所需的jar包依赖关系 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...

  10. Node节点

    1.Node:节点元素节点->HTML标签文本节点->文字 但是在标准浏览器(除了IE6~8)中会把空格和换行都当做文本节点来处理注释节点->注释document2.节点的特征元素节 ...