Linear Regression with Scikit Learn
Before you read
This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below:
The Python version: 3.6.2
The Numpy version: 1.8.0rc1
The Scikit-Learn version: 0.19.0
The Matplotlib version: 2.0.2
Training Data
Here is the training data about the Relationship between Pizza and Diameter below:
training data | Diameter(inch) | Price($) |
---|---|---|
1 | 6 | 7 |
2 | 8 | 9 |
3 | 10 | 13 |
4 | 14 | 17.5 |
5 | 18 | 18 |
Now, we can plot the figure about the diameter and price first:
import matplotlib as plt
def run_plt():
plt.figure()
plt.title('Pizza Price with diameter.')
plt.xlabel('diameter(inch)')
plt.ylabel('price($)')
plt.axis([0, 25, 0, 25])
plt.grid(True)
return plt
X = [[6], [8], [10], [14], [18]]
y = [[7], [9], [13], [17.5], [18]]
plt = run_plt()
plt.plot(X, y, 'k.')
plt.show()
Now we get the figure here.
Next, we use linear regression to fit this model.
from scikit.linear_model import LinearRegression
model = LinearRegression()
# X and y is the data in previous code.
model.fit(X, y)
# To predict the 12inch pizza price.
price = model.predict([12][0])
print('The 12 Pizza price: % .2f' % price)
# The 12 Pizza price: 13.68
The Simple Linear Regression define:
Simple linear regression assumes that a linear relationship exists between the response variable and explanatory variable; it models this relationship with a linear surface called a hyperplane. A hyperplane is a subspace that has one dimension less than the ambient space that contains it. In simple linear regression, there is one dimension for the response variable and another dimension for the explanatory variable, making a total of two dimensions. The regression hyperplane therefore, has one dimension; a hyperplane with one dimension is a line.
The Simple Linear Regression model that scikit-learn use is below:
\(y = \alpha + \beta * x\)
\(y\) is the predicted value of the response variable. \(x\) is the explanatory variable. \(alpha\) and \(beta\) are learned by the learning algorithm.
If we have a data \(X_{2}\) like that,
\(X_{2}\) = [[0], [10], [14], [25]]
We want to use Linear Regression to Predict the Prize Price and Print the Figure. There are two steps:
- Use \(x\), \(y\) previous to fit the model.
- Predict the Prize price.
model = LinearRegression()
# X, y is the prevoius data
model.fit(X,y)
X2 = [[0], [10], [14], [25]]
y2 = model.predict(X2)
plt.plot(X2, y2, 'g-')
The figure is following:
Summarize
The function previous that I used is called ordinary least squares. The process is :
- Define the cost function and fit the training data.
- Get the predict data.
Evaluating the fitness of a model with a cost function
There are serveral line created by different parmeters, and we got a question is that which one is the best-fitting regression line ?
plt = run_plt()
plt.plot(X, y, 'k.')
y3 = [14.25, 14.25, 14.25, 14.25]
y4 = y2 * 0.5 + 5
model.fit(X[1:-1], y[1:-1])
y5 = model.predict(X2)
plt.plot(X2, y2, 'g-.')
plt.plot(X2, y3, 'r-.')
plt.plot(X2, y4, 'y-.')
plt.plot(X2, y5, 'o-')
plt.show()
The Define of cost function
A cost function, also called a loss function, is used to de ne and measure the
error of a model. The differences between the prices predicted by the model andthe observed prices of the pizzas in the training set are called residuals or training errors. Later, we will evaluate a model on a separate set of test data; the differences between the predicted and observed values in the test data are called prediction errors or test errors.
The figure is like that:
The original data is black point, as we can see, the green line is the best-fitting regression line. But how computer know!!!!
So we should use some mathematic method to tell the computer which one is best-fitting.
model.fit(X, y)
yr = model.predict(X)
for idx, x in enumerate(X)
plt.plot([x, x], [y[idx], yr[idx]], 'r-')
Next we plot the residuals figure.
We can use residual sum of squares to measure the fitness.
\(SS_{res} = \sum _{i =1}^n(y_{i} - f(x_{i}))^{2}\)
Use Numpy package to calculate the \(SS_{res}\) value is 1.75
import numpy as np
SSres = np.mean((model.predict(X) - y)** 2)
Solving ordinary least squares for simple linear regression
Recall that simple linear regression is that:
\(y = \alpha + \beta * x\)
Our goal is to get the value of \(alpha\) and \(beta\). We will solve \(beta\) first, we should calculate the variance of \(x\) and covariance of \(x\) and \(y\).
Variance is a measure of how far a set of values is spread out. If all of the numbers in the set are equal, the variance of the set is zero.
\(var(x) = \frac{\sum_{i=1}^n(x_{i} - \overline{x})^{2}}{n-1}\)
\(\overline{x}\) is the mean of x .
var = np.var(X, ddof =1)
# var = 23.2
Convariance is a measure of how much two variales change to together. If the value of variables increase together. their convariace is positive. If one variable tends to increase while the other decreases, their convariace is negative. If their is no linear relationship between the two variables, their convariance will be equals to zero.
\(cov(x,y) = \frac{\sum_{i=1}^n(x_{i}-\overline{x})(y_{i}-\overline{y})}{n-1}\)
import numpy as np
cov = np.cov([6, 8, 10, 14, 18], [7, 9, 13, 17.5, 18])[0][1]
Their is a formula solve \(\beta\)
\(\beta = \frac{cov(x,y)}{var(x)}\)
\(\beta = \frac{22.65}{23.2} = 0.9762\)
We can solve \(\alpha\) as the following formula:
\(\alpha = \overline{y} - \beta * \overline{x}\)
\(\alpha = 12.9 - 0.9762 * 11.2 =1.9655\)
Summarize
The Regression formula is like following:
\(y = 1.9655 + 0.9762 * x\)
Linear Regression with Scikit Learn的更多相关文章
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- [Sklearn] Linear regression models to fit noisy data
Ref: [Link] sklearn各种回归和预测[各线性模型对噪声的反应] Ref: Linear Regression 实战[循序渐进思考过程] Ref: simple linear regre ...
- Machine Learning #Lab1# Linear Regression
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞 ...
- 斯坦福机器学习视频笔记 Week1 Linear Regression and Gradient Descent
最近开始学习Coursera上的斯坦福机器学习视频,我是刚刚接触机器学习,对此比较感兴趣:准备将我的学习笔记写下来, 作为我每天学习的签到吧,也希望和各位朋友交流学习. 这一系列的博客,我会不定期的更 ...
- 转载 Deep learning:二(linear regression练习)
前言 本文是多元线性回归的练习,这里练习的是最简单的二元线性回归,参考斯坦福大学的教学网http://openclassroom.stanford.edu/MainFolder/DocumentPag ...
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- Linear Regression with machine learning methods
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a sim ...
- 二、Linear Regression 练习(转载)
转载链接:http://www.cnblogs.com/tornadomeet/archive/2013/03/15/2961660.html 前言 本文是多元线性回归的练习,这里练习的是最简单的二元 ...
- CheeseZH: Stanford University: Machine Learning Ex5:Regularized Linear Regression and Bias v.s. Variance
源码:https://github.com/cheesezhe/Coursera-Machine-Learning-Exercise/tree/master/ex5 Introduction: In ...
随机推荐
- react的基本使用,及常用填坑
import React, { Component } from 'react'; import PropTypes from 'prop-types'; import './First.css'; ...
- C语言程序设计基础-第1周作业-初步
1.安装带有计算机术语的翻译软件 2.在自己电脑上安装C编译器,windows系统建议安装dev-c++,其他系统自行查找. 3.加入课程小组,有任何疑问可以在小组中提问:https://group. ...
- 网络1711班 C语言第四次作业批改总结
网络1711班 C语言第四次作业批改总结 助教有话说(写在前面) 近来,有同学跟老师和助教们反映:博客作业太多太麻烦,而且对编程能力提高似乎没什么帮助?在这里我要谈一谈我的感想. 博客作业的意义? 首 ...
- Beta版本敏捷冲刺每日报告——Day1
1.情况简述 Beta阶段第一次Scrum Meeting 敏捷开发起止时间 2017.11.2 08:00 -- 2017.11.2 21:00 讨论时间地点 2017.11.2晚6:00,软工所实 ...
- 关于5303狄惟佳同学的myod程序设计的补充实现
关于5303狄惟佳同学的myod程序设计的补充实现 原版代码实现的局限 原版代码主函数 int main(int argc,char *argv[]) { if(strcmp(argv[1], &qu ...
- 冲刺NO.11
Alpha冲刺第十一天 站立式会议 项目进展 项目进入尾声,主要测设工作完成过半,项目总结也开始进行. 问题困难 项目的困难现阶段主要是测试过程中存在一些"盲点"很难发现或者发现后 ...
- centos 安装配置 mysql
安装环境:CentOS7 64位 MINI版,安装MySQL5.7 1.配置YUM源 在MySQL官网中下载YUM源rpm安装包:http://dev.mysql.com/downloads/repo ...
- EasyUI内容页Tabs。
html: <div data-options="region:'center'"> <div id="tabs" class="e ...
- PHP冒泡排序、选择排序、插入排序
$arr = [1, 8, 7, 5, 4, 2, 11, 9, 20]; 冒泡排序: for ($i = 0; $i < count($arr); $i ++) { for ($j = 0; ...
- (转载) Mysql 时间操作(当天,昨天,7天,30天,半年,全年,季度)
1 . 查看当天日期 select current_date(); 2. 查看当天时间 select current_time(); 3.查看当天时间日期 select current_timesta ...