[POJ 2248]Addition Chains
Description
An addition chain for n is an integer sequence with the following four properties:
- a0 = 1
- am = n
- a0 < a1 < a2 < ... < am-1 < am
- For each k (1<=k<=m) there exist two (not necessarily different) integers i and j (0<=i, j<=k-1) with ak=ai+aj
You are given an integer n. Your job is to construct an addition
chain for n with minimal length. If there is more than one such
sequence, any one is acceptable.
For example, <1,2,3,5> and <1,2,4,5> are both valid solutions when you are asked for an addition chain for 5.
Input
The input will contain one or more test cases. Each test case consists of one line containing one integer n (1<=n<=100). Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the required integer sequence. Separate the numbers by one blank.
Hint: The problem is a little time-critical, so use proper break conditions where necessary to reduce the search space.
Sample Input
5
7
12
15
77
0
Sample Output
1 2 4 5
1 2 4 6 7
1 2 4 8 12
1 2 4 5 10 15
1 2 4 8 9 17 34 68 77
题解
考虑迭代加深的$dfs$
我们一开始可以算出最少需要多少个,就是答案的下界
这个怎么算呢?从$1$开始不断乘$2$,看什么时候比$n$大,就是下界
然后将答案往上加,用$dfs$判断是否可行
这样我们可以进行减枝了
如果当前的答案是$ans$,当前搜索的位置是$x$
如果$a[x]*2^{ans-x}$还比$n$小,就可以$return$了
这样就可以搜过去了
#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<vector>
#include<cstdio>
#include<string>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std; int n,depth;
int ans[]; bool Dfs(int cen,int dep)
{
if (cen==dep)
{
if (ans[cen]==n) return true;
return false;
}
for (int i=;i<=cen;i++) for (RE int j=;j<=i;j++)
{
if (((ans[i]+ans[j])<<(dep-cen-))<n) continue;
ans[cen+]=ans[i]+ans[j];
if (Dfs(cen+,dep)) return true;
}
return false;
} int main()
{
ans[]=;
while (scanf("%d",&n)&&n)
{
depth=log2(n)+;
while (true)
{
if (Dfs(,depth)) break;
depth++;
}
for (RE int i=;i<=depth;i++) printf("%d ",ans[i]);
printf("\n");
}
return ;
}
[POJ 2248]Addition Chains的更多相关文章
- poj 2248 Addition Chains (迭代加深搜索)
[题目描述] An addition chain for n is an integer sequence with the following four properties: a0 = 1 am ...
- POJ 2248 - Addition Chains - [迭代加深DFS]
题目链接:http://bailian.openjudge.cn/practice/2248 题解: 迭代加深DFS. DFS思路:从目前 $x[1 \sim p]$ 中选取两个,作为一个新的值尝试放 ...
- [zoj] 1937 [poj] 2248 Addition Chains || ID-DFS
原题 给出数n,求出1......n 一串数,其中每个数字分解的两个加数都在这个序列中(除了1,两个加数可以相同),要求这个序列最短. ++m,dfs得到即可.并且事实上不需要提前打好表,直接输出就可 ...
- POJ 2245 Addition Chains(算竞进阶习题)
迭代加深dfs 每次控制序列的长度,依次加深搜索 有几个剪枝: 优化搜索顺序,从大往下枚举i, j这样能够让序列中的数尽快逼近n 对于不同i,j和可能是相等的,在枚举的时候用过的数肯定不会再被填上所以 ...
- [POJ2248] Addition Chains 迭代加深搜索
Addition Chains Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5454 Accepted: 2923 ...
- UVA 529 Addition Chains(迭代搜索)
Addition Chains An addition chain for n is an integer sequence with the following four propertie ...
- 1443:【例题4】Addition Chains
1443:[例题4]Addition Chains 题解 注释在代码里 注意优化搜索顺序以及最优化剪枝 代码 #include<iostream> #include<cstdio&g ...
- 「一本通 1.3 例 4」Addition Chains
Addition Chains 题面 对于一个数列 \(a_1,a_2 \dots a_{m-1},a_m\) 且 \(a_1<a_2 \dots a_{m-1}<a_m\). 数列中的一 ...
- Addition Chains POJ - 2248 (bfs / dfs / 迭代加深)
An addition chain for n is an integer sequence <a0, a1,a2,...,am=""> with the follow ...
随机推荐
- 201621123060《JAVA程序设计》第十一周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多线程相关内容. 2. 书面作业 本次PTA作业题集多线程 1. 源代码阅读:多线程程序BounceThread 1.1 BallR ...
- 201621123044《JAVA程序设计》第一周学习总结
1. 本周学习总结 1.了解了JAVA的诞生以及发展历史简介.JAVA语言的特点,以及JAVA的电脑安装以及环境配置. 2.JAVA不仅可以用eclipse进行编写,也可以在记事本和notepad++ ...
- 视图和URL配置
视图和URL配置 实验简介 上一章里我们介绍了如何创建一个Django项目并启动Django的开发服务器.本章你将学到用Django创建动态网页的基本知识. 同时,也教会大家怎么在本地机器上建立一个独 ...
- segmentedControl设置字体和字体颜色问题
NSDictionary *dic = [NSDictionary dictionaryWithObjectsAndKeys:[UIColor blackColor],UITextAttributeT ...
- DML数据操作语言之常用函数
所谓函数,就是输入某一值,得到相应的输出结果的功能.相当于一个加工厂,给了原料,最终产出成品. 其中原料 就是参数(parameter). 产品 就是返回值. 函数大致可以分为以下五个种类: 算术函数 ...
- submit()提交表单时,显示警示框
我同事在实现submit()提交表单时,想要页面弹出警示框. 但是折腾了几小时后发现,submit()始终不执行. 她的代码如下: $(document).ready(function(){ $(&q ...
- 直方图均衡化及matlab实现
在处理图像时,偶尔会碰到图像的灰度级别集中在某个小范围内的问题,这时候图像很难看清楚.比如下图: 它的灰度级别,我们利用一个直方图可以看出来(横坐标从0到255,表示灰度级别,纵坐标表示每个灰度级别的 ...
- Windows Server2012 故障转移集群之动态仲裁(Dynamic Quorum)
本篇文章主要介绍Windows2012的故障转移集群一个新功能“动态仲裁”,默认该功能是开启的: 动态仲裁能在当前群集投票出现分歧的情况下取消某些节点的投票权限,比如偶数个节点的群集环境.仲裁见证和动 ...
- js window
window对象: browser object mode :bom对象. bom提供了独立于内容而与浏览器窗口进行交互的对象. bom主要用于管理窗口与窗口之间的通讯,因此其核心对象是window ...
- 使用 dynamic 类型让 ASP.NET Core 实现 HATEOAS 结构的 RESTtful API
上一篇写的是使用静态基类方法的实现步骤: http://www.cnblogs.com/cgzl/p/8726805.html 使用dynamic (ExpandoObject)的好处就是可以动态组 ...