【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)
【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)
题面
Vjudge
给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和。
题解
首先线性筛出欧拉函数值
排序之后倒着取min
最后\(O(n)\)求和即可
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 1200000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int phi[MAX+1000],zs[MAX+1000],pr[MAX],tot;
bool vis[MAX+1000];
int id[MAX+1000];
void Pre()
{
vis[1]=true;
for(int i=2;i<=MAX;++i)
{
if(!vis[i])pr[++tot]=i,phi[i]=i-1;
for(int j=1;j<=tot&&i*pr[j]<=MAX;++j)
{
vis[i*pr[j]]=true;
if(i%pr[j]==0){phi[i*pr[j]]=phi[i]*pr[j];break;}
else phi[i*pr[j]]=phi[i]*(pr[j]-1);
}
}
}
bool cmp(int a,int b){if(phi[a]!=phi[b])return phi[a]<phi[b];return a<b;}
int mp[MAX+1000];
int main()
{
Pre();
for(int i=1;i<=MAX;++i)id[i]=i;
memset(mp,63,sizeof(mp));
for(int i=1;i<=MAX;++i)mp[phi[i]]=min(mp[phi[i]],i);
for(int i=MAX-1;i;--i)mp[i]=min(mp[i+1],mp[i]);
int T=read();
for(int gg=1;gg<=T;++gg)
{
int n=read();
long long ans=0;
for(int i=1;i<=n;++i)ans+=mp[read()];
printf("Case %d: %lld Xukha\n",gg,ans);
}
return 0;
}
【LightOJ1370】Bi-shoe and Phi-shoe(欧拉函数)的更多相关文章
- FZU 1759 欧拉函数 降幂公式
Description Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...
- poj3696 快速幂的优化+欧拉函数+gcd的优化+互质
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...
- HDU 4483 Lattice triangle(欧拉函数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...
- UVa 11426 (欧拉函数 GCD之和) GCD - Extreme (II)
题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...
- 【欧拉函数】【HDU1286】 找新朋友
找新朋友 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submi ...
- HDU 1695 GCD(欧拉函数+容斥原理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...
- SPOJ 5152 Brute-force Algorithm EXTREME && HDU 3221 Brute-force Algorithm 快速幂,快速求斐波那契数列,欧拉函数,同余 难度:1
5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version ...
- uva 11426 GCD - Extreme (II) (欧拉函数打表)
题意:给一个N,和公式 求G(N). 分析:设F(N)= gcd(1,N)+gcd(2,N)+...gcd(N-1,N).则 G(N ) = G(N-1) + F(N). 设满足gcd(x,N) 值为 ...
- [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]
题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...
随机推荐
- .vue文件在webstorm中es6语法报错解决方法
1 语法支持es6设置 Preferences > Languages & Frameworks > JavaScript 把 Javascript Language versio ...
- 读书共享 Primer Plus C-part 9
第十二章 存储类.链接和内存管理 针对代码块中的static变量做如下范本 #include ...
- CSS3动画中的animation-timing-function效果演示
CSS3动画(animation)属性有如下几个: 属性 值 说明 animation-name name 指定元素要使用的keyframes名称 animation-duration time(ms ...
- apache服务器主域名跳转www域名
为集中网站权重,有时候我们需要把www域名跳转到主域名,或者主域名跳转到www域名. apache服务器如何实现主域名跳转www域名: 打开网站根目录下.htaccess文件,没有的话新建一个上传至网 ...
- TensorFlow 实战之实现卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeu ...
- for 循环中的 i 变量问题
1:如何点击每一个 li 的时候 alert 输出其index? <ul id="test"> <li>111</li> <li>2 ...
- Bootstrap表单验证
主要用过两个: jqBootstrapValidation: https://github.com/ReactiveRaven/jqBootstrapValidation bootstrapValid ...
- 通过 Service 访问 Pod - 每天5分钟玩转 Docker 容器技术(136)
本节开始学习 Service.我们不应该期望 Kubernetes Pod 是健壮的,而是要假设 Pod 中的容器很可能因为各种原因发生故障而死掉.Deployment 等 controller 会通 ...
- 初学Python(第二课)
一.列表.元组的操作 1.定义:列表类似于C中的数组,使用方法也相似.它的定义举例如下:letter = ['A','B','C','D','E','F']; 2.列表的切片 (1)访问一个元素且知道 ...
- 五子棋的判断输赢规则 -- java编程(简单优化完整版)
五子棋的判断输赢规则代码 -- 完整优化版 一.前言 之前浏览过很多网上的方法,但总找不到比较完整,也get不到其他大神的思路,就直接画图分析,分析了之后就有了如下的代码,当然还想到更加优化的一种,只 ...