Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50
 #include<stdio.h>
#include<string>
#include<string.h>
#include<vector>
#include<queue>
using namespace std;
const int maxn = 1e5 + ;
const int INF = ;
struct node {
int from, to, cap, flow;
};
struct Dinic {
int n, m, s, t;
vector<node>nodes;
vector<int>g[maxn];
int vis[maxn];
int d[maxn];
int cur[maxn];
void clearall(int n) {
for (int i = ; i < n ; i++) g[i].clear();
nodes.clear();
}
void clearflow() {
int len = nodes.size();
for (int i = ; i < len ; i++) nodes[i].flow = ;
}
void add(int from, int to, int cap) {
nodes.push_back((node) {
from, to, cap,
});
nodes.push_back((node) {
to, from, ,
});
m = nodes.size();
g[from].push_back(m - );
g[to].push_back(m - );
}
bool bfs() {
memset(vis, , sizeof(vis));
queue<int>q;
q.push(s);
d[s] = ;
vis[s] = ;
while(!q.empty()) {
int x = q.front();
q.pop();
int len = g[x].size();
for (int i = ; i < len ; i++) {
node &e = nodes[g[x][i]];
if (!vis[e.to] && e.cap > e.flow ) {
vis[e.to] = ;
d[e.to] = d[x] + ;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x, int a) {
if (x == t || a == ) return a;
int flow = , f, len = g[x].size();
for (int &i = cur[x] ; i < len ; i++) {
node & e = nodes[g[x][i]];
if (d[x] + == d[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > ) {
e.flow += f;
nodes[g[x][i] ^ ].flow -= f;
flow += f;
a -= f;
if (a == ) break;
}
}
return flow;
}
int maxflow(int a, int b) {
s = a;
t = b;
int flow = ;
while(bfs()) {
memset(cur, , sizeof(cur));
flow += dfs(s, INF);
}
return flow;
}
vector<int>mincut() {
vector<int>ans;
int len = nodes.size();
for (int i = ; i < len ; i++) {
node & e = nodes[i];
if ( vis[e.from] && !vis[e.to] && e.cap > ) ans.push_back(i);
}
return ans;
}
void reduce() {
int len = nodes.size();
for (int i = ; i < len ; i++) nodes[i].cap -= nodes[i].flow;
}
} f;
int main() {
int n, m;
while(~scanf("%d%d", &m, &n)) {
f.clearall(n);
f.clearflow();
for (int i = ; i < m ; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
f.add(u, v, c);
}
printf("%d\n", f.maxflow(, n));
}
return ;
}

Drainage Ditches~网络流模板的更多相关文章

  1. POJ 1273:Drainage Ditches 网络流模板题

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63339   Accepted: 2443 ...

  2. USACO 4.2 Drainage Ditches(网络流模板题)

    Drainage DitchesHal Burch Every time it rains on Farmer John's fields, a pond forms over Bessie's fa ...

  3. HDU 1532 Drainage Ditches(网络流模板题)

    题目大意:就是由于下大雨的时候约翰的农场就会被雨水给淹没,无奈下约翰不得不修建水沟,而且是网络水沟,并且聪明的约翰还控制了水的流速, 本题就是让你求出最大流速,无疑要运用到求最大流了.题中m为水沟数, ...

  4. POJ 1273 Drainage Ditches (网络流Dinic模板)

    Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...

  5. NYOJ 323 Drainage Ditches 网络流 FF 练手

    Drainage Ditches 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 Every time it rains on Farmer John's fields, ...

  6. Drainage Ditches--hdu1532(网络流 模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1532 Drainage Ditches Time Limit: 2000/1000 MS (Java/Other ...

  7. HDU1532 Drainage Ditches 网络流EK算法

    Drainage Ditches Problem Description Every time it rains on Farmer John's fields, a pond forms over ...

  8. poj 1273 Drainage Ditches (网络流 最大流)

    网络流模板题. ============================================================================================ ...

  9. POJ 1273 Drainage Ditches 网络流 FF

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 74480   Accepted: 2895 ...

随机推荐

  1. [poj3461]Oulipo_KMP

    Oulipo poj-3461 题目大意:给你两个字符串s和p,问s中有多少个等于p的子串. 注释:$1\le strlen(p)\le 10^4\qquad1\le strlen(s)\le 10^ ...

  2. JAVA关于一些变量的技巧

    如果一个变量的值不变,而且他还要被多次用到 另建一个类,把变量定义到里面   注意  private static      public class JexlConfig {     private ...

  3. 对lua表中数据按一定格式处理,循环

    function putStartCard(handCard) function dataDeal(array,a,b,c) cclog("进入datadeal=============== ...

  4. CSS的盒子模型有哪些,区别是什么

    1)盒模型: 内容(content).填充(padding).边界(margin). 边框(border)   2)有两种, IE 盒子模型.标准 W3C 盒子模型:IE的content部分包含了 b ...

  5. OSI七层协议模型、TCP/IP四层模型学习笔记

    1. OSI七层和TCP/IP四层的关系 1.1 OSI引入了服务.接口.协议.分层的概念,TCP/IP借鉴了OSI的这些概念建立TCP/IP模型. 1.2 OSI先有模型,后有协议,先有标准,后进行 ...

  6. VMware虚拟机误删除vmdk文件后如何恢复?

    故障描述: Dell R710系列服务器(用于VMware虚拟主机),Dell MD 3200系列存储(用于存放虚拟机文件),VMware ESXi 5.5版本,因意外断电,导致某台虚拟机不能正常启动 ...

  7. 关于 Bootstrap的知识

    Bootstrap是简单.灵活的用于搭建WEB页面的HTML.CSS.Javascript的工具集.Bootstrap基于HTML5和CSS3,具有漂亮的设计.友好的学习曲线.卓越的兼容性,还有12列 ...

  8. LeetCode & Q53-Maximum Subarray-Easy & 动态规划思路分析

    Array DP Divide and Conquer Description: Find the contiguous subarray within an array (containing at ...

  9. LeetCode & Q169-Majority Element-Easy

    Array Divide and Conquer Bit Manipulation Description: Given an array of size n, find the majority e ...

  10. Python内置函数(57)——print

    英文文档: print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False) Print objects to the text str ...